Forth - The New Synthesis

progress report
disaggregating the stacks and memory

EuroForth'21 conference 2021-09-12
Ulrich Hoffmann

Forth the New Synthesis

1 7
,\\ 'Eﬁ’j u} I...a
. fl)
= ey }y&
=,
%F{ A© R
' . '/"\ \l .
|
w, ‘ll "»
Forth disaggregating synthesizing
Latest work
» investigate in input and output
» connection between host and target
« communicating commands between host and target
* screens
* do not need to be 1kB BLOCKs form-feed separated flles
*bnl list load can work as usual

Current work
* playing with unicode

* disaggregating stacks

* disaggregating memory

playing with Unicode

» Browsing mathematical Unicode symbols, maybe arrows are nice:

SYNONYM - TO 5 VALUE x 42 - X X emit
SYNONYM S-D S>D 42 S-D D.

SYNONYM %- 2/ line-width %-

SYNONYM -BODY >BODY ' eggs -BODY ...

o Greek letters:
100 CONSTANT At noo At ms
¢ Or single symbols where we now have symbol sequences:

SYNONYM = <= s00 24 19 S 17 ooc
SYNONYM = <> sooo X 4B B IF ooc

But in general | think you have to be careful using symbols as they best need to have a commony accepted meaning.

playing with Unicode
As a counter example, | find symbols for control structures interesting but eventually misleading:

o doubtful

SYNONYM » OF
SYNONYM <« ENDOF
SYNONYM [CASE
SYNONYM g ENDCASE

casetest (n ——)
r

0 » ." no" «

1» ." one" «
2» ." two" «
n manyll

d

. items" ;

Disaggregating the Stacks

*+ data stack and return stack are used for different purposes in
different situations.

* disaggregating the stacks means separating these purposes and
look at them in isolation.

Disaggregating the Stacks

Interpreting | Compiling | Executing comment

Data Stack parameter passing |

parameter passing

(unsigned) integers (unsigned) integers

characters characters

floats floats

addresses addresses

control flow BEGIN IF ...

compiler security

Return Stack internal return addresses return addresses return addresses

temporary storage >R R> R-ALLOT
loop parameters DO LOOP
exception frames CATCH THROW

locals >X X X!

|
|
|
|
|
|
| constant folding
|
|
|
|
|
|

Disaggregating the Stacks

+ data stack and return stack are used for different purposes in
different situations.

* disaggregating the stacks means separating these purposes and
look at them in isolation.

Disaggregating the Stacks

- interferences of the the different purposes lead to
restrictions such as:

- no passing of parameters to definitions at compile time
(interference of control flow/compiler security and parameter
passing)

- no use of >R R> across DO-LOOP-boundaries (interference
of temporary storage usage and loop parameters)

- no use of >R R> across deflnitions (interference of
temporary storage and return addressses).

- specialized stack operators to deal with floating point
numbers on the return stack (FDUP, FSWAP, swap cell and float)

Disaggregating the Stacks

Separate stacks for each purpose
Possible disaggregations are

- split data stack into

- a separate stack for parameter passing that holds
(unsigned) integers, characters and also addresses

- a separate floating point stack for holding floating point
numbers (the route Forth-200x went)

- a separate control flow stack for managing control
structures

- a seperate object stack for handling references to data
structures and objects

- split the return stack into

- a seperate stack for return addreses
seperate stack for temporary data (>R R> R-ALLOT)
seperate stack for loop parameters (DO LOOP)
seperate stack for exception handling (CATCH THROW)
seperate stack for local variables

a
a
a
a

Disaggregating the Memory

~e

~e

Buffer: (u --)
Create allot ;

Buffer: (u --)
here swap allot \ RAM { c0 | ... | cu-1}
Create , \ ROM { 'rom }
Does> (-- addr) @ \Y&—“‘DS
o
Buffer: (u --)

here swap allot \ RAM
Constant \ ROM

Questions?

