
Memory Safety

Without Tagging nor Static Type Checking

M. Anton Ertl, TU Wien

Memory Safety

Forth

Safe Forth

• Out-of-bounds memory accesses

• Accesses to the wrong structure

• Uninitialized memory

• Use after free

Memory Safety in Programming Languages

• Not memory-safe: Forth, Assembler, C, C++

• Memory-safe: most languages (e.g., Factor, Oforth, Java)

• Distinguish between references and data

static type checking (Factor, Java)

tagging (Oforth, Lisp)

• Out-of-bounds memory accesses: bounds checking

• Accesses to the wrong structure: (dynamic) type checking

• Uninitialized memory: zero everything

• Use after free: garbage collection etc.

Safe Forth

• A memory-safe Forth-family language

• no static type checking (unlike Factor)

• no tagging (unlike Oforth)

• no addresses on data stack

no @ ! etc.

no address arithmetic

• object references on object stack

• values, value-flavoured fields

• array accesses with

[] (u array -- v)

->[] (v u array --)

Safe Forth: Stacks

data
stack

return
stack

FP
stack

control-flow
stack

Forth-2012
conceptual

data
stack

return
stack

FP
stack

typical Forth-2012
implementation

data
stack

system
r-stack

FP
stack

object
stack

Safe Forth data
r-stack

object
r-stack

control-flow
stack

Catch stack underflows and overflows

Example Program (cont.)

begin-structure intlist begin-structure intlist

field: next ovalue: next

field: val value: val

end-structure end-structure

: insert {: n listp -- :} : insert {: n o: list1 -- list2 :}

intlist allocate throw intlist new

listp @ over next ! list1 oover to next

n over val ! n odup to val ;

listp ! ;

variable mylist 0 mylist ! null

1 mylist insert 1 insert

2 mylist insert 2 insert

ovalue mylist

Example Program (cont.)

: .list (list --) : .list (list --)

begin (list1) begin (list1)

dup while odup null<> while

dup val @ . odup val .

next @ repeat next repeat

drop ; odrop ;

mylist @ .list \ prints 2 1 mylist .list \ prints 2 1

Statistics

• Out of 133 core words in Forth-2012

• 96 (72%) unchanged

• 14 (11%) adapted stack effects (e.g., #> (xd – string))

• 2 (2%) other small changes

• 21 (16%) deleted (e.g., ! >r)

• 14 (11%) new (e.g., null= oconstant)

• Some non-core words required (e.g. value to)

plus object-stack equivalents (e.g., ovalue)

Escape Hatch

• Sometimes we want to do things beyond Safe Forth (e.g., hardware I/O)

• Sometimes we want to eliminate the Safe Forth overhead/opportunity cost

• escape to Forth

programmer responsible for memory-safety

requirements beyond Forth memory-safety

• Weld escape hatch shut for processing untrusted code

Multi-threading

• Multi-threading and garbage collection: complex

especially with decent performance

• Alternative:

per-thread garbage collector

no passing of object references between threads

marshal and unmarshal objects for inter-task communication

can also be used between computers

Implementation efficiency

• No implementation yet

• Direct overhead may be less than many expect

Missed opportunities may be a bigger problem

Conclusion

• Memory Safety: references limited to within objects

• Safe Forth

no addresses

separate data and object stack

separate data and object values, value-flavoured fields, etc.

Status

• Paper design

• May become reality if there is enough interest

