
Memory Safety Without Tagging nor Static Type Checking
M. Anton Ertl∗

TU Wien

Abstract
A significant proportion of vulnerabilities are due
to memory accesses (typically in C code) that
memory-safe languages like Java prevent. This pa-
per discusses a new approach to modifying Forth
for memory-safety: Eliminate addresses from the
data stack; instead, put object references on a sep-
arate object stack and use value-flavoured words.
This approach avoids the complexity of static type
checking (used in, e.g., Java and Factor), and also
avoids the performance overhead of dynamic type
checking for non-memory operations. This paper
discusses the consequences of this approach on the
language, and on performance.

1 Introduction
Accessing arrays with an index outside the array
bounds is usually a bug. Other memory access er-
rors include reading an uninitialized location, ac-
cessing a field of the wrong structure, and accessing
memory that has been freed. Memory access errors
are common as sources of program crashes, but they
are also a common source of vulnerabilities: Gaynor
reports [Gay20] that at least 65% of vulnerabilities
in various software environments are due to memory
safety issues.
From pretty early on there were programming

languages where such bugs could not happen or
would be caught and reported, e.g., Lisp and Al-
gol 60. Such programming languages are called
memory-safe languages.

Forth, on the other hand, allows the programmers
to shoot themselves in the foot, and relies on care-
ful programmers to avoid such bugs; while this has
some advantages, there are occasions when some
programmers prefer memory safety. The Forth
world has some answers in this area, e.g., Factor
and Oforth, but they rely on static type checking
and/or tagging all data for dynamic type checking.
In the present work, we introduce the approach

of avoiding some of that type checking by elimi-
nating addresses from the data stack, and instead
keeping object1 references on an object stack. The

∗anton@mips.complang.tuwien.ac.at
1Here object refers to a piece of memory, similar to a

contiguous region in standard Forth, or an object in the C

benefits of this approach are that it avoids both the
complexity of static type checking as well as the
slowdown of tagging and tag-checking.

In Section 2 we look at the problem and how
others have solved it. Section 3 describes our own
approach; in particular, the main contribution of
this work is to keep object references separate from
other data through separate stacks (Section 3.1)
and value-flavoured words (Section 3.6). The rest of
Section 3 describes various other changes necessary
for memory safety, but most of that is relatively
straightforward. Section 4 gives an idea about the
difference between Forth and Safe Forth by divid-
ing the Core wordset of standard Forth into words
that are unchanged in Safe Forth, and words that
need various changes. Section 5 discusses topics
beyond 1:1-correspondence between Forth and Safe
Forth. We present implementation approaches for
some common operations in Safe Forth and their
theoretical effect on performance in Section 6. Safe
Forth is currently a paper design (Section 7). Fi-
nally, Section 8 discusses some related work.

1.1 Safe Forth or a memory-safe
Forth?

The intention of this paper is to explore the idea of
memory-safety without tagging and without static
type checking in general. One can build a num-
ber of different languages on that foundation, which
makes the exposition challenging: Describing only
one of these languages loses generality, but makes
the description easier to understand. Therefore we
take this approach, and we call that language Safe
Forth, but we occasionally describe alternative vari-
ants.

Safe Forth is object-oriented; this plays a minor
role in much of this paper, but occasionally shines
through. A more detailed description of the object
model is given in Section 3.8, where the topic is first
discussed in more depth.

standard. The division of memory into pieces instead of pro-
viding a flat address space is universal in memory-safe lan-
guages. However, elsewhere in this paper object typically is
used in the object-oriented sense.



Ertl Memory Safety

2 Existing approaches
Most languages in wide use today are memory-safe,
with the exceptions being C, C++, assembly lan-
guage and Forth; languages like Rust and Ada have
unsafe escape hatches, and many others have inter-
faces to C that can also serve as escape hatches (but
into C, not an unsafe dialect of the base language).
As an example, Java has primitive types (such

as int or double) and reference types (objects in-
cluding arrays). Java has static type rules and the
Java compiler applies them and knows which type
an expression has. On the level of objects, the type
checker often does not know the exact class/type
of an object, just that it is a subclass of a certain
class; the exact class information is present at run-
time in a field at the start of each object and is used
for method dispatch and for subtype checking.
This scheme is roughly followed by all object-

oriented languages, but in many language imple-
mentations the primitive types and object refer-
ences are not distinguished by static type checking,
but by tagging: A bit or a few bits of a machine
word (a cell in Forth terminology) are reserved for
indicating the type of the machine word: each prim-
itive type represented as a machine word gets a dif-
ferent tag, and object references also get their tag
(usually one tag for all object references, with more
information available at the start of the object).2
There are also cases like the Ocaml interpreter that
uses tagging in a statically type-checked language
to simplify the garbage collector.
In the world of Forth-like languages, Factor uses

static type checking, while Oforth uses tagging.
These implementations ensure memory-safety as

follows:

Out-of-bounds access: Array accesses are
bounds-checked. Sophisticated compilers can
eliminate a significant proportion of these
bounds checks [BGS00].

Uninitialized location: All locations are initial-
ized. Java and Oforth zero all locations: this
initializes integers to 0, FP variables to 0.0, and
reference types to null.

Access to the wrong field: Java only allows ac-
cesses to fields that belong to the (statically
known) class of the object. Java allows casting
to a class C in order to establish that static
knowledge, but then Java tests during the cast
(at run-time) whether the object is an instance
of C. Likewise, other languages either have to
establish static knowledge or check on every
field access that the object has that field. Like

2There is also a technique called NaN-boxing which for
the purposes of this paper is a variant of tagging and is not
discussed further here.

for bounds checks, there are ways to reduce the
number of necessary checks by increasing com-
piler sophistication.

Use after free: The common approach to avoid-
ing use-after-free bugs is to let the language
perform automatic storage reclamation, either
through garbage collection or through refer-
ence counting (Python). Rust employs a so-
phisticated static type system that ensures that
no reference to an object remains when the ob-
ject is freed.

3 Safe Forth
This section discusses how Safe Forth differs from
Forth, and how its approach achieves memory-
safety.

3.1 Basic approach
The basic idea in the present approach is to separate
object references from other data types by putting
object references on a separate objects stack, and
no addresses on the data stack. Words that work
with object references take them from the objects
stack, and words that work with non-reference data
take them from the data and FP stacks.

This makes it unnecessary to use tags or sophisti-
cated type checkers, and yet (with the right setup)
it is impossible to perform address arithmetic and
similar things that are incompatible with memory
safety.

In particular, consider the twenty dynamically
most frequently executed primitives in the statistics
at http://www.complang.tuwien.ac.at/forth/
peep/sorted:

1 13.5% ;s
2 13.2% col:
3 9.0% @
4 5.1% ?branch
5 4.6% lit
6 3.4% var:
7 3.4% dup
8 3.2% user:
9 3.0% swap

10 2.8% +
11 2.5% con:
12 2.0% >r
13 1.9% r>
14 1.8% 0=
15 1.3% and
16 1.3% c@
17 1.2% !
18 1.2% over
19 1.1% cells
20 1.1% rot

http://www.complang.tuwien.ac.at/forth/peep/sorted
http://www.complang.tuwien.ac.at/forth/peep/sorted


Ertl Memory Safety

data
stack

return
stack

FP
stack

control-flow
stack

Forth-2012
conceptual

data
stack

return
stack

FP
stack

typical Forth-2012
implementation

data
stack

system
r-stack

FP
stack

object
stack

Safe Forth
data

r-stack
object
r-stack

control-flow
stack

Figure 1: Stacks in Forth and Safe Forth

The black numbers are for words that do not need
to handle tags in a tagged implementation, either
because they don’t handle data, they handle arbi-
trary data, or they push pre-tagged data (e.g., lit).
The slanted blue lines are for words that would need
to deal with tags in a tagged system, but do not
need that with our approach (or with static type
checking). The bold red lines are for words that
deal with addresses; in a tagged system like Oforth
they are replaced with words that have to check
both the tags and the class descriptors of the object
references, while with our approach (and with static
type checking) you avoid the tag checking (but still
have to check the class descriptor).
For the four problems mentioned above our ap-

proach is:

Out-of-bounds access: Array accesses are
bounds-checked (and first the object is
checked to be an array of the appropriate
type).

Uninitialized location Values, arrays, and struc-
tures are zeroed on creation.

Access to the wrong field A field access checks
whether the object actually has that field. It
is possible to optimize this check away in some
cases with relatively little complexity; e.g., in
a method of class C we know that this is an
instance of C.

Use after free Use garbage collection. Other ap-
proaches may be possible, but are unlikely to
be simpler.

What this approach does not give us is type
checking of the data on the data stack. If you want
to add 1 to the letter A, you still can3. You also
don’t have to pay the compiler complexity or run-
time cost of such type checking.

3While Safe Forth is probably not something Chuck
Moore is interested in, at least in this respect it follows his
preferences [RCM96]

3.2 Stack underflows and overflows
Stack overflows and underflows undermine memory
safety if they are not caught. Fortunately they can
be caught at no run-time cost on systems with a
paged MMU, by putting unaccessible guard pages
around each stack. This approach has been used
by Gforth since almost its inception, and is a good
approach for Safe Forth.

Gforth-fast keeps stack items in registers; to
avoid spurious underflow exceptions from traffic be-
tween these stack items and the stack in memory,
several memory slots below the stack bottom are
left accessible. In a Safe Forth using this tech-
nique, the registers and the extra memory slots of
the object stack have to be initialized to safe values
(e.g., null); then, while accessing stack items below
the bottom is possible, this cannot subvert memory
safety.

If MMU-based stack bounds checking is unavail-
able, the stack pointer can be bounds-checked (more
expensively) with code every time it is changed.

3.3 Return stack
In addition to keeping object references on a sep-
arate stack, we also have to ensure that we don’t
open a memory-safety hole through the return
stack. Forth systems typically keep return ad-
dresses on the return stack, as well as counted-
loop parameters and cells moved by the program
from the data stack with words like >r. In ordi-
nary Forth, a program can execute arbitrary code
with >r exit, which is not compatible with mem-
ory safety.

Our solution to this problem is to just exclude
the return stack words like >r from Safe Forth.

Another solution is to split the return stack into
three stacks: A system return stack for system-
execution types (return addresses and loop control
paramaters), a data return stack for stashing away
data stack items, and an object return stack for
stashing away object stack items. However, if you



Ertl Memory Safety

implement locals, the additional benefit of the latter
two stacks does not seem to be worth the cost.
In either case, exit inside a counted loop

poses a problem (unless we split return addresses
and counted loop parameters into using different
stacks). Standard Forth has unloop to remove
counted-loop parameters, but memory-safety can
be violated in typical implementations by using
unloop in a non-standard way. However, because
the stack for system-execution types now only con-
tains these types, it is relatively straightforward
to implement exit without needing unloop: Just
count the number of counted loop nests, and let
exit compile code for dropping the corresponding
number of loop parameters before compiling the re-
turn.
Figure 1 shows the relation between the stacks in

Forth and Safe Forth. Optional stacks are shown in
light gray.

3.4 Control-flow stack
The control-flow stack contains information about
incomplete control structures during compilation.
On most systems it is implemented on the data
stack (although the standard does not guarantee
that).
We considered putting the control-flow stack

items on the object stack in Safe Forth. However, in
Safe Forth we have to ensure that do-like words are
matched with loop-like words not only during com-
pilation, but also at run-time (to avoid memory cor-
ruption by mixups of loop-control parameters and
return addresses).
Eventually the simplest way to achieve this is to

have a separate control-flow stack.

3.5 Null

Null is a value on the object stack without object;
trying to access through a null reference throws an
error. Null is implemented as address 0 (to make
type-ignorant initialization possible). Programs can
test whether a reference is null.

3.6 No variables
Variables push an address, so Safe Forth elimi-
nates them. They are replaced with values. In
addition to the classical values that communicate
with the data stack, there are ovalues for holding
object references; an ovalue ov pushes its content on
the object stack, and to ov consumes an element
from the object stack.
In all other areas variable-flavoured words for

storing data are eliminated and replaced with value-
flavoured words, with both data-stack and object-
stack variants. In particular, field-access words are

value-flavoured (Forth-2012 only provides variable-
flavoured field words).

Locals are value-flavoured in Forth-2012, which
is kept in Safe Forth. The object-stack variant is
defined by using o: in front of the local. E.g.

{: a o: b c :}

defines two data-stack locals a and c and an object-
stack local b.

All these value-flavoured words for storing data
initialize the data to 0, 0e or null if there is no
initialization value given (e.g., for locals after |).

3.7 Fields in structures
This section discusses the access of fields in struc-
tures in a non-object-oriented memory-safe Forth.
We use the Forth-2012 structure syntax in this sec-
tion, with modifications.

A (value-flavoured) field is defined with one of the
defining words ovalue: value: cvalue: fvalue:
etc.4 Fields are defined in the context of a structure.
For a field f, performing f takes a reference from

the object stack and checks if the reference points
to a structure/object that has a field f. If so, it
pushes the content of that field in the structure on
the appropriate stack (data, object, or FP stack).
If not, it throws an exception.

Performing to f5 is very similar, except that it
takes a value from the appropriate stack and stores
it in the field.

Forth’s field-defining words keep the offset on
the data stack during the definition, but that
would mean that the program could change
offsets and thus undermine memory-safety, so
in Safe Forth the offset is kept in a hid-
den variable.6 This means that we have to
use begin-structure ... end-structure rather
than the alternative 0 ... constant.

The structure name pushes an object represent-
ing the structure type on the object stack, and new
allocates an object of that type and initializes it
with the type, and all fields zeroed.

Figure 2 shows an example of a structure. We
discuss the representation of the type in Section 6.

3.8 Objects and fields
Safe Forth uses an object model with single inheri-
tance of fields and method implementations, where
every method selector can be used with any class
(duck typing). When invoking a method, the top of

4Many of these defining words are also defined for Forth
in Gforth’s struct-val.fs.

5The alternative syntax ->f is already implemented in
Gforth.

6Alternative: an opaque object referenced through the
object stack.



Ertl Memory Safety

begin-structure intlist
  ovalue: intlist-next
  value:  intlist-val
end-structure

intlist new ovalue x
5 x to intlist-val

type
intlist-next

intlist-val

intlist
null
5

Figure 2: Source code for creating a structure and
the resulting memory for the structure

the object stack O is removed, put into this, and
used for method dispatch (calling the right method
implementation for the combination of the class of
O and the method selector).
Fields in objects are similar to fields in structures,

with one difference: they refer to the object in this
rather than the object stack, and do not consume
that object. Because this is set on method entry,
we know that the class D of the object is a subclass
of the class C for which the method implementa-
tion was defined; if f is defined in a superclass B of
C, no checking is necessary, and the check can be
eliminated when compiling f inside that method.
Note that, e.g., postpone f can put f in a con-

text where the class of this is not guaranteed to
be a subclass of B, so it’s better to make this op-
timization dependent on the compilation context.
The alternative is to ensure through language re-
strictions that f can only be used in the right con-
text, but one might overlook some corner case, and
the restrictions may be too limiting.

3.9 Arrays
Arrays are accessed through a reference on the ob-
ject stack. They are either object arrays that con-
tain only object references and null, or they are
data arrays that contain only data, no object refer-
ences. Safe Forth has typed data arrays, i.e., they
contain only cells, only characters, or only floats.
Safe Forth uses polymorphic access words:

[] ( u array -- v )
->[] ( v u array -- )

The type of v depends on the type of the array,
e.g., for an FP array v is a FP value on the FP
stack, for an object array v is an object reference
on the object stack.7 If the index u is outside the

7A disadvantage of this approach is that [] and ->[] have
a stack effect that depends on the passed array, which makes
the code harder to analyse. Alternatively, we could have
stack-effect-specific array access words such as o[] ->o[] []
->[] f[] ->f[].

50 farray oconstant a
3e 1 a ->[]
a 1 3 slice oconstant b
5e 1 b ->[]

type
length
values

a
farray

50
0e
3e
5e
...
0e

b
fslice

1
3

type
base
start
length

Figure 3: Source code for creating an array and an
array slice, and the resulting memory

array bounds, an exception is thrown.
An alternative is to have object arrays and, for

non-objects, untyped arrays of bytes with typed ac-
cess words that use byte offsets rather than element
indices. This approach would be closer to Forth and
still memory-safe, but users of an object-oriented
memory-safe Forth probably prefer the approach
outlined for Safe Forth.

Figure 3 shows an example of an array. We dis-
cuss the representation of the type in Section 6.

The word farray creates a new FP array with
the length (number of elements) given on the data
stack; the elements are initialized to 0e.

3.10 Array slices
Forth supports representing parts of arrays by giv-
ing the start address and number of elements (or
number of address units), the same representation
as the full array. In Forth address arithmetic is used
for that, but we cannot use that in Safe Forth, so
we provide array slices instead. In the simplest case
an array slice starts at some element of the array it
is based on (with index 0 in the array slice), and has
a length at most as long as the remaining elements
of the base array.

Figure 3 shows an example of an array slice.
This assumes (object-oriented) dynamic dispatch
for ->[] to work. Once we have polymorphism for
array access words, we can have more fancyful kinds
of array slices beyond what Forth can represent with
address and length, e.g., with strided access.

3.11 Strings and String Buffers
Standard Forth uses c-addr u to represent both
strings (e.g., in type) and string buffers (e.g., in
read-file). In some cases (e.g., move), string
buffers are represented by the address alone, and
the word cannot prevent buffer overflows.



Ertl Memory Safety

16 stringbuf oconstant s
s" abc" s move
s type

type
maxlength
actlength

s
carray

16
3
a
b
c
...

NUL

Figure 4: Source code for creating a string buffer,
and for storing a literal string there, and the result-
ing memory

The use of two cells for this purpose leads to deep
stacks and related complications, and so a signif-
icant number of programmers advocates counted
strings or other alternative single-cell representa-
tions. So in Safe Forth we use a single reference on
the object stack for representing a string or a string
buffer.

A string buffer has a maximum length (used for
words that write to the buffer, such as read-file),
and an actual length (used for words that read from
the string, such as type); see Fig. 4. Trying to store
a too-long string into a string buffer results in an
exception.

For read-only strings the maximum length is un-
necessary. Such a specialized representation can
easily be implemented in an object-oriented Safe
Forth in addition to string buffers. Trying to write
to a read-only string results in an exception.

3.12 Execution tokens

In Forth, execute, compile, and defer! take an xt
from the data stack. In Safe Forth, we need to put
execution tokens on the object stack; however, the
execution tokens in Safe Forth will likely have a dif-
ferent representation than those in Forth, because it
needs a type field like other objects referenced from
the object header. One way to achieve this on top
of an unchanged Forth system is to create objects
that contain a type field and the Forth-level exe-
cution token. In Gforth a more efficient approach
(one memory access less) would be to add a type
field to the word header [PE19], but that requires
deeper changes.

3.13 does> and >body

Create is eliminated. Instead, does> is combined
with oconstant8 and the code behind does> starts
with the value of the oconstant pushed onto the
object stack. Correspondingly, >body produces the
value of the oconstant from its xt. E.g., the fol-
lowing is a possible implementation of constant
in a non-object-oriented memory-safe Forth (Sec-
tion 3.7):

begin-structure const-struct
value: val

end-structure

: constant ( n "name" -- )
const-struct new odup to val oconstant

does> ( -- n )
( const-struct ) val ;

3.14 Garbage collection
There are conservative garbage collectors that do
not move the data around, and do not need to know
if a cell contains a memory reference or some other
data. The existing Forth garbage collector9 is con-
servative.

Alternatively, precise garbage collection needs to
know which cells contain memory references and
which don’t; the benefit is that it can move the
data around, which eliminates fragmentation and
makes allocation faster.

In the absence of tagging, it is difficult to keep
track of all memory references in all situations:
It’s relatively straightforward to know it for ob-
ject fields: objects are headed with a class address,
and the class can contain the necessary information.
But for locals, things are more difficult; either we
have separate locals stacks for data and for object
references, or we need some way to know which cells
on the locals stack or return stack are references and
which are data. These ways either require some run-
time overhead or significant compiler complications.

To avoid such complications, we stick to conser-
vative garbage collection.

4 Words
In order to see how similar and how different Safe
Forth is from Forth, in this section we look at the
Forth-2012 core words, and determine which are un-
changed, which are changed, and how substantial
the needed changes are.

8Oconstant is the object-stack equivalent of constant. An
alternative view is that it is like ovalue except that you can-
not use to on its children. Note that you can put mutable
objects into oconstants

9http://www.complang.tuwien.ac.at/forth/
garbage-collection.zip

http://www.complang.tuwien.ac.at/forth/garbage-collection.zip
http://www.complang.tuwien.ac.at/forth/garbage-collection.zip


Ertl Memory Safety

In some cases one might choose the break in com-
patibility to perform other changes as well, e.g., to
change the input stream handling, but in this paper
we do not go into that and only work out changes
that are related to the requirements of memory-
safety.

4.1 Unchanged
These words typically work just on the data stack,
but in some cases some stack items are taken off or
pushed on the object stack, FP stack, or system-
return-stack as discussed above: execution tokens
are on the object stack, system compilation types
(e.g., control-flow stack items like orig) are on the
control-flow stack, system execution types (e.g.,
nest-sys, i.e., return addresses) are on the return
stack, and floating-point values are on the FP stack.
# #S ’ ( * */ */MOD + +LOOP - . ." /

/MOD 0< 0= 1+ 1- 2* 2/ 2DROP 2DUP 2OVER
2SWAP : ; < <# = > >IN ?DUP ABORT ABORT"
ABS AND BEGIN BL CHAR CELL+ CELLS CHAR+
CHARS CONSTANT CR DECIMAL DEPTH DO DROP
DUP ELSE EMIT EXECUTE FM/MOD HOLD I IF
IMMEDIATE INVERT J KEY LEAVE LITERAL
LOOP LSHIFT M* MAX MIN MOD NEGATE OR OVER
POSTPONE QUIT RECURSE REPEAT ROT RSHIFT
S>D SIGN SM/REM SPACE SPACES SWAP THEN U.
U< UM* UM/MOD UNTIL WHILE XOR [ [’] [CHAR]
]

CELL+ CELLS CHAR+ CHARS are listed above, be-
cause they can be used to compute sizes or offsets,
but they are not very useful in most Safe Forth vari-
ants (except those that use sizes and offsets for ar-
rays instead of numbers of elements or indexes).

4.2 Adapted stack effects
#> ( xd -- string )
>BODY ( xt -- object )
>NUMBER ( ud1 string -- ud2 stringslice )
ACCEPT ( stringbuf -- )
COUNT ( string -- c stringslice )
ENVIRONMENT? ( string -- false | ... true )
EVALUATE ( ... string -- ... )
FILL ( stringbuf c -- )
FIND ( string -- xt +-1 | string 0 )
MOVE ( string stringbuf -- )
S" ( run-time: -- string )
SOURCE ( -- string )
TYPE ( string -- )
WORD ( c -- string )

Among these, count is useful only in its meaning
as alias for c@+.

4.3 Slight changes
DOES> now works on oconstants.

EXIT now works in counted loops without preced-
ing unloop.

4.4 Substantial changes
@ is deleted. Values and value-flavoured words push
their value, and [] loads a value from an array.

! is deleted. to is used for storing into values and
fields, is for storing into deferred words, and ->[]
for storing into arrays.

+! is deleted. The system may have +to.
Allot is deleted. Words like new or array are

used instead.
State is replaced with the value state@.
Base is replaced with the value base@.

4.5 Deleted words
! +! , 2! 2@ >R @ ALIGN ALIGNED ALLOT

BASE C! C, C@ CREATE HERE R> R@ STATE
UNLOOP VARIABLE

4.6 New words
base@ ( -- u )
null= ( o -- )
o= ( o1 i2 -- )
odup? ( o -- null | o o )
oconstant ( o "name" -- )
odrop ( o -- )
odup ( o -- o o )
oliteral ( o -- ) ( run-time: -- o )
oover ( o1 o2 -- o1 o2 o1 )
orot ( o1 o2 o3 -- o2 o3 o1 )
state@ ( -- f )
oswap ( o1 o2 -- o2 o1 )
[] ( u array -- v )
->[] ( v u array -- )

This set of words only allows individual values
and array data. You typically also want to add
some words for defining classes, fields and methods
(not listed here).

4.7 Statistics
Relative to a base of 133 Core words in Forth-2012,
96 (72%) are unchanged, 14 (11%) have adapted
stack effects and 2 (2%) have other small changes.
21 (16%) are deleted, and 14 (11%) are new.

5 Advanced topics

5.1 Looping over arrays
Arrays are often accessed in loops, e.g., iterating
from the first to the last element. The bounds



Ertl Memory Safety

checks (and type checks) for these accesses can of-
ten be optimized away, and many memory-safe lan-
guages employ compiler optimization based on some
form of data-flow analysis [BGS00] to achieve that.
Of course we want to use a simpler way in Forth.

One way is to have array-walking words that walk
the whole array (or array slice) and don’t need to
perform bounds checking. This could look as fol-
lows:

: type ( string -- )
arraydo emit arrayloop ;

Arraydo would take an array and push one ele-
ment of the array (from first to last) in every itera-
tion; the loop would be closed with arrayloop.

In addition one might want variants that write an
element in every iteration, or that push an element
from one array and store a result into another array,
etc. You may also want to work with a strided ar-
ray slice, possibly with negative stride (for walking
the array backwards). One problem with flexible
arraydos that can take arrays of various types, and
array slices with all kinds of strides is that the way
the array is handled is only known at run-time, so
one typically has to call a run-time-dispatched han-
dler. One could avoid that by having a variant of
arraydo for every kind of array (slice) it can be
applied to, but that leads to an explosion of words
and would result in less flexible words that use these
words.
An alternative to a do...loop-like control struc-

ture is to define a word like Postscript’s forall or
Oforth’s apply that takes an array and an xt, and
for each element of the array, pushes the element
and calls the xt. One disadvantage of this approach
is that either the code in the xt cannot access locals
of the definition containing the forall, it requires
explicit passing of the locals [EP18], or a complex
implementation; by contrast, arraydo...arrayloop
supports access to locals in the loop body.

5.2 Escape hatch
Memory-safe languages often have an escape hatch
into code that is not guaranteed to be safe: E.g.,
Modula-2 has the module SYSTEM that allows ac-
cess to low-level facilities, Java has the Java native
interface (JNI) that allows calling C functions, and
Rust has unsafe blocks.
The purpose of such an escape hatch is twofold:

• It allows doing things that are impossible in the
memory-safe language, such as low-level access
to I/O devices.

• It allows doing things more efficiently that are
inefficient in the memory-safe language. E.g.,
arraydo...arrayloop could be implemented in

Safe Forth by accessing each element individ-
ually and incurring a bounds check for each
element, but it is more efficient to write these
words in Forth without bounds checks (all ac-
cesses are within the array).

The typical approach is not to use the escape
hatch at each place in application code that needs to
deal with, e.g., I/O devices, but to define a memory-
safe interface to these I/O devices, and use the es-
cape hatch to implement this interface. This keeps
the unsafe code to a minumum.

Two people reading a draft version of this pa-
per suggested to include a way to specify absolute
addresses for memory-mapped I/O in Safe Forth.
We know of no way to achieve this without open-
ing a hole that may subvert the memory-safety
guarantees of Safe Forth. But using the escape
hatch to achieve this is appropriate and seems sim-
ple enough: E.g., one could define words for the
individual registers of the I/O device, or alterna-
tively define the I/O device as a slice in an array
of bytes (specifying the address through the escape
hatch), and use offsets in that array to access var-
ious registers. In either case, the programmer of
code beyond the escape hatch would guarantee the
memory-safety of the words added to Safe Forth, or
of the data structures modified through the escape
hatch.

An advantage of having an escape hatch is that
Safe Forth does not need to include words for ev-
ery contingency; instead, you can define them as
needed.

For Safe Forth implemented on top of Forth, the
obvious escape hatch language is Forth, and the es-
cape hatch is relatively simple to implement: Safe
Forth provides its words in a wordlist different from
the wordlists providing unsafe words, and in Safe
Forth only this wordlist and wordlists defined in
memory-safe code are on the wordlist. The escape-
hatch word forth makes the Forth wordlist avail-
able again.

There may also be cases where you want to weld
the escape hatch shut, in particular when you want
to process untrusted code (e.g., coming from the
Internet). It is straightforward to have a mechanism
for disabling the escape hatch.

5.3 Multi-threading
Some of the challenges of multi-threaded multi-
tasking are: Single-threaded stop-the-world
garbage collection is relatively simple and is
implemented in an existing garbage collector for
Forth; extending it for a single-threaded coop-
erative multi-tasker is relatively easy, but has
the unpleasant effect of stopping all tasks while
it collects. Things become really complex when



Ertl Memory Safety

multi-threading is involved, because other threads
may be in states that are not safe for garbage
collection. There are solutions to these problems,
but they are quite complex.
An alternative is to set the system up such that

only per-thread/task garbage collection is neces-
sary. One way to do that is that every thread/task
has its own memory and collects its own memory.
The tasks communicate through channels, mail-
boxes, or the like, but cannot pass object references
across these communication channels. Instead, if
you want to pass a data structure to another task,
it has to be marshalled (serialized) on the sender
and unmarshalled on the receiver.
The disadvantage of this approach is that the

marshalling and unmarshalling constitutes an over-
head; the advantage is that programs organized in
this way can put the tasks into different processes,
and actually even different computers.
Alternative approaches are to avoid garbage col-

lection, e.g., with a reference-counting scheme, or to
implement full-blown multi-threaded garbage col-
lection.

6 Implementation efficiency
This section does not describe the implementation
in detail, but addresses performance concerns you
may have. The implementation approaches sug-
gested in this section are designed to go with an
object-oriented system where every selector can be
used with any class (duck typing), with single in-
heritance (especially of fields), where all methods
of a class are defined before the first object of the
class is created.
In this section, we describe the implementation of

some Safe Forth features as Forth code, but it could
just as well be some other lower-level language, e.g.,
assembly language.
The performance claims are not supported em-

pirically in this paper, possibly in a future paper.

6.1 Type equality
Field accesses to structures that do not support ex-
tensions only have to check the structure type for
equality. So an access to field intlist-val in Fig. 2
could be implemented in Forth as follows:
: intlist-val ( o -- n )

o> dup @ intlist = if
2 cells + @ exit then

type-error throw ;

On processors with out-of-order cores (such as
the performance cores on desktop, server, and cur-
rent smartphone CPUs) the if will usually be pre-
dicted correctly, which means that the code needed
to compute the condition (in bold red) is not on

class

next

val

intlist

null

0

b

class

next

list

null

a
list

object
-2 cells
4 cells

not-understood

list::foreach

intlist
list

object
-3 cells
4 cells

intlist::sum

list::foreach

class-limit
method-limit

foobar

foreach

class-limit
method-limit

foobar

foreach

selector sum
selector foreach

object class
  ovalue: next
  m: foreach ... ;m
end-class list

list class
  value: val
  m: sum ... ;m
end-class intlist  

Figure 5: Simple example of some classes and ob-
jects. The bold red parts are used for subtype
testing, the slanted blue parts for method dispatch.

the critical path; it costs resources (of which most
such CPUs have plenty), but not latency. Only
the slanted blue part is on the critical path for
computing the result. So, on this class of CPUs
this checked version will be about as fast as the
unchecked version, at least in latency-limited code
(the usual case).

6.2 Subtype test
If the Safe Forth supports structure extension, or
equivalently inheritance of fields in classes, we need
to check if the type of the structure/object is a sub-
type of the type the field was defined for.

We use Cohen’s approach to subtype testing,
[Coh91], see Fig. 5: Each class has a subtype table
(shown in bold red) containing its own address,
and the addresses of all its ancestor classes. The
primal ancestor (object) has offset −1 cells, the
next generation (list in the example) has offset
−2 cells, etc. For each class the offset at which it
is to be found is known. E.g., list and all of its
descendents will find the address of list at offset
−2 cells in their subtype table; nondescendents will
either have a higher (closer-to-zero) class-limit,
or will have a different class at offset −2 cells. So
the code for an access to field next with a subtype



Ertl Memory Safety

check looks as follows:

: next ( o1 -- o2 )
o> dup @ dup @ -2 cells <= if

-2 cells + @ list = if
cell+ @ >o exit then then

type-error throw ;

Concerning performance, the latency in the usual
correctly-predicted case is again the same as for the
unchecked case, but the check needs more resources
than a type equality check.
Note that when accessing a field of this (the ob-

ject used for method dispatch), an ancestor class of
this is known, and if the field belongs to an an-
cestor of that class (the usual case), no check at
run-time is needed.

6.3 Method dispatch

We use a per-class method table with bounds check-
ing (a bounds-checked version of unhashed general
selectors [Ert12, Section 3.1]). The table is shown in
the blue part of Fig. 5: method-limit contains the
offset from the start of the class descriptor (where
the class addresses point to) to just beyond the last
method implemented for the class. The code for a
method dispatch looks as follows:

: sum ( o -- n )
o> dup @ dup cell+ @ 3 cells u>= if

2 cells + @ execute exit then
not-understood ;

Again, the bounds check (in red) does not cost
latency on an out-of-order CPU, and the whole dis-
patch is usually as fast as the unchecked version.

6.4 Array access

An array access as a colon definition has to check
the type, and the bounds. If the array access is
implemented as a method, the method dispatch has
to be performed, but there is no need to check the
type. The bounds check has to be implemented in
any case. Here’s how f[] implemented as method
for farray (Fig. 3) might look:

m: f[] ( n farray -- r )
( farray is in THIS )
dup length u< if

floats values + f@ exit then
bound-error throw ;m

The bounds check is in red, and if the if is
correctly predicted (the usual case), it does not
contribute to the latency. A correctly predicted
method dispatch also does not contribute to the la-
tency.

7 Status and further work
For now Safe Forth is a paper design. Implement-
ing it and evaluating this implementation is on my
agenda, but currently not at the top, and it depends
on the interest of the community if it ever reaches
the top.

One could implement it as a layer on top of
Forth relatively easily, but that would mean that
the object-stack access is slow. For decent perfor-
mance, the object stack needs to be implemented
with its stack pointer in a register and maybe an
OTOS (top-of-object-stack) register, and a this
register, which requires changing an existing sys-
tem at a pretty basic level and is somewhat more
involved.

8 Related work
For the main contribution of the present work, the
use of a separate stack and value-flavoured words to
reduce the need for static or dynamic type checking,
there is surprisingly little related work. A number
of Forth systems have a separate FP stack (stan-
dardized in Forth-2012), but the reason for that is
not type-safety, and the separation ends as soon as
the stack contents are stored to memory.

Similarly, a string stack has often been proposed
for dealing with strings [MM81], but again, type
safety has not been a primary goal. A vector stack
has been used for dealing with vectors [Ert17]; there
the main point is to provide vectors as an opaque
data type. Still, the object stack can be seen as a
generalization of the string and vector stacks.

There are several memory-safe languages based
on Forth, e.g., Oforth10 and Factor [PEG10]. How-
ever, Oforth uses type tagging and Factor uses
static type checking in combination with run-time
type checking, while Safe Forth uses the division
between object references and integer/FP data to
get rid of a large part of the type checking.

Apart from that, many design decisions in
Oforth11 are similar to those in Safe Forth: Oforth
initializes all locations to zero. You can only read
from and write to fields (with @field !field), not
take their address; field accesses are allowed only to
fields of self’s class, and no class check is necessary.
Oforth keeps only system-defined stuff on the return
stack, and it uses a separated control-flow stack.
Oforth has no variables, only (task-local) values.
Execute is a method selector for objects. Does> is
eliminated, because it can be replaced with object-
oriented dispatch. Unlike Safe Forth, Oforth imple-
ments control flow similar to Factor or Postscript:
by passing closures (quotations with lexical scoping)

10http://www.oforth.com/
11Personal communication with Franck Bensusan

http://www.oforth.com/


Ertl Memory Safety

to control-flow words that execute the control-flow
word multiple times).
There is a large body of work on subtype

testing and method dispatch; Ducournau [Duc11]
gives an excellent, although somewhat abstract
overview. We choose Cohen’s subtype testing ap-
proach [Coh91] because we comply with its single-
inheritance limitation and because it is simple to
implement incrementally. For method dispatch
in objects2 [Ert12] we proposed using a number
of these techniques (to allow different space/time
tradeoffs), here we select one of those and enhance it
with bounds checking similar to that used in Oforth
[Ben18]; however, Oforth has a table of classes per
selector, while the unhashed general selectors in ob-
jects2 and in the present work have a table of selec-
tors per class.

9 Conclusion
Memory-safe languages eliminate a significant class
of bugs and vulnerabilities. Forth can be turned
into a memory-safe language by eliminating all op-
erations involving addresses, e.g., @ and !. In order
to be still useful as a general-purpose language, we
replace addresses with object references, but they
have to be distinguished from other data. Other
languages and virtual machines use tagging and/or
static type checking to distinguish them; we instead
put object references on an object stack, and have
ovalue and other defining words that keep object
references separated from other data.
Starting from this premise, and otherwise keeping

relatively close to standard Forth results in surpris-
ingly few changes to the core vocabulary.

Acknowledgments
Franck Bensusan and the reviewers provided helpful
comments that helped improve the paper.

References
[Ben18] M. Franck Bensusan. Method dispatch

in Oforth. In 34th EuroForth Conference,
pages 31–36, 2018. 8

[BGS00] Rastislav Bodik, Rajiv Gupta, and Vivek
Sarkar. ABCD: eliminating array bounds
checks on demand. In Proceedings of
the ACM SIGPLAN 2000 Conference on
Programming Language Design and Im-
plementation, pages 321–333, 2000. 2, 5.1

[Coh91] Norman H. Cohen. Type-extension type
tests can be performed in constant time.

ACM Transactions on Programming Lan-
guages and Systems, 13(4):626–629, Oc-
tober 1991. Technical Correspondence.
6.2, 8

[Duc11] Roland Ducournau. Implementing stati-
cally typed object-oriented programming
languages. ACM Computing Surveys,
43(3):Article 18, April 2011. 8

[EP18] M. Anton Ertl and Bernd Paysan. Clo-
sures — the Forth way. In 34th EuroForth
Conference, pages 17–30, 2018. 5.1

[Ert12] M. Anton Ertl. Methods in objects2:
Duck typing and performance. In 28th
EuroForth Conference, pages 96–103,
2012. 6.3, 8

[Ert17] M. Anton Ertl. SIMD and vectors. In
33rd EuroForth Conference, pages 25–36,
2017. 8

[Gay20] Alex Gaynor. What science can
tell us about C and C++’s se-
curity. Blog posting, https:
//alexgaynor.net/2020/may/27/
science-on-memory-unsafety-and-security/,
2020. 1

[MM81] Michael McCourt and Richard A. Marisa.
The string stack. Forth Dimensions,
III(4):121–124, 1981. 8

[PE19] Bernd Paysan and M. Anton Ertl. The
new Gforth header. In 35th EuroForth
Conference, pages 5–20, 2019. 3.12

[PEG10] Sviatoslav Pestov, Daniel Ehrenberg, and
Joe Groff. Factor: a dynamic stack-based
programming language. In William D.
Clinger, editor, Proceedings of the 6th
Symposium on Dynamic Languages, DLS
2010, October 18, 2010, Reno, Nevada,
USA, pages 43–58. ACM, 2010. 8

[RCM96] Elizabeth D. Rather, Donald R. Col-
burn, and Charles H. Moore. The evo-
lution of Forth. In History of Program-
ming Languages, pages 625–658. ACM
Press/Addison-Wesley, 1996. 3

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

	Introduction
	Safe Forth or a memory-safe Forth?

	Existing approaches
	Safe Forth
	Basic approach
	Stack underflows and overflows
	Return stack
	Control-flow stack
	Null
	No variables
	Fields in structures
	Objects and fields
	Arrays
	Array slices
	Strings and String Buffers
	Execution tokens
	does> and >body
	Garbage collection

	Words
	Unchanged
	Adapted stack effects
	Slight changes
	Substantial changes
	Deleted words
	New words
	Statistics

	Advanced topics
	Looping over arrays
	Escape hatch
	Multi-threading

	Implementation efficiency
	Type equality
	Subtype test
	Method dispatch
	Array access

	Status and further work
	Related work
	Conclusion

