
The Left-Hand Path
dark confessions of a Forth hobbyist

Glyn Faulkner
EuroForth 2022

2022-09-17

This is the gateway to Hell, baby. . .
Welcome to The Underworld.
— Kassandra Cross

The Left-hand Path

In Western Esotericism. . .

Right-hand path magic used for good, or guided by a code of ethics
Left-hand path magic used for evil, or without consideration of

morality

In Forth. . .

The Right-hand Path Forth used as a powerful tool to solve
real-world problems quickly and efficiently

The Left-hand Path writing many Forth and Forth-adjacent
language interpreters that the world definitely doesn’t
need

Joy: the Gateway Drug

The original concatenative functional language by Manfred von
Thun

calc ==
[numerical]
[]
[unswons

[dup [+ - * /] in]
[[[calc] map uncons first] dip call]
["bad operator\n" put]
ifte]

ifte;

From Joy to Funeral
A concatenative functional language in Polish notation

def reverse [fold 'cons []]
def odd [= 1 % 2]
def even [= 0 % 2]

-- fold [fun] start [list]
def *fold [fold dig 2 'dup]
def fold [

doif
[dip 'drop drop]
[fold *apply dip 'swap dig 2 'uncons]

dip 'unrot *null rot
]
def rot [exhume 2]
def unrot [bury 2]

Funeral (2011-12)
Used for HTML generation

html body div h1 "Hello World"

def html [newTag "html" setDefault
xmlns="http://www.w3.org/1999/xhtml"]

def body [newTag "body"]
def div [newTag "div"]
def h1 [newInlineTag "h1"]

including some ugly proprietary markup needed for a work project

def guess_value_from_name [
doif

[prepend "<<IPF~" append ">>" drop]
[prepend "<<" append cons .. append ">>"]

= "IPQ" dup take 3 dup
]

Cantilever (2014)

An indirect-threaded Forth-like written in 32-bit x86 assembly,
inspired by JonesForth with influences from Joy and Funeral

: -- ['\n' =] scan-in ; #immediate
-- and now we have comments. Yay!

First class dates

0,1 ok 2022-02-28 1 + putdate nl
2020-02-28 1 + putdate ;

2022-03-01
2020-02-29

And times

0,1 ok 11:33:30 32 + puttime ;
11:34:02

The downward spiral
HackForth (2014)

word NextWord 8 "nex" # (-- label)
call SkipSpaces
call MakeLabel
addl %ecx, %edx
movl %edx, (next_input)

end

Thing (2014)

prim compile_lit ",lit" # (n --)
m_dup
movl $lit, %eax
call compile_call
stosl
m_drop

ret

The Quest for Minimalism

STTW (2015)
op fetch "@" _dup ; mov (%edx), %eax
op store "!" mov %eax, (%edx) ; _drop

TinyASM (2018)
(?0 w1 w2 ... if x is non-zero skip w1)
: ?0 (x --) 0<> cell-size and >r + r> ;

FifthWheel (2018)
?: dup (n -- n n) dsp@ @ ;
?: drop (x --) dsp@ cell+ dsp! ;

Rage-coding

Projects I started due to anger or frustration, then quickly
abandoned once I had calmed down.

WebOfHate (2018)
A small memory-footprint web browser that puts the user, instead of
coporations, back in control (reaction to trying to compile
Chromium from source)

BootstrapFromMBR (2020)
Let’s throw our operating systems away and return to the stone-age
(reaction to all modern operating systems!)

Wide (2021)
A tiny Forth IDE, intended to include compiler, debugging tools and
full-featured editor (reaction to learning that the Atom editor exists)

The Need for Speed (of development)
OneDayProject (2022-03-08)
A native code compiler in approximately sixty x86 machine
instructions.
despatch: # read a 16-bit token and despatch

based on the two high-bits.
_dup
xor %eax, %eax
mov _src, %esi
subl $1, _slen
jc bye
lodsw
mov %esi, _src
xor %ecx, %ecx
shld $2, %ax, %cx
shl $2, %ax
mov handlers(,%ecx,4), %ecx
jmp *%ecx

Lessons learned walking the left-hand path
I Replacing lods with a separate move from memory and add is

often a performance gain for ITC code
I Replacing lods with pop also works (bigger difference on

Intel)!
I You can implement direct-threading using ret as NEXT and

ESP as the instruction-pointer. But just don’t.
I Binary source code generally isn’t a great idea. . .
I . . . but having a binary-token intermediate representation

simplifies your compiler and speeds the process of
bootstrapping a new Forth.

I It does not appear to be possible to fit a useful Forth system
into the 510 bytes available on an x86 boot sector.

I You can write an assembler in Forth using only c,. . . if you
enjoy pain.

I Forth can be bootstrapped using a subset of Forth, without the
need for compile-time execution, as if and recurse represent
predictable sequences of instructions.

I It is possible to bring-up a rudimentary Forth system in one day,
even in assembly.

I GNU assembler isn’t as bad as you think.
I Rage-programming is rarely productive!

Where next?

How about a parameterised Forth interpreter generator?

[marsu@celaeno 4g]$./4g -t ITC -T -m ANSI -o forth
Indirect-threaded x86_64 Linux ANSI Forth
Options: top-of-stack in register, linked-list dictionary
Generating forth.S
gcc -m64 forth.S -o forth
Done
[marsu@celaeno 4g]$./forth

Ask me how this is going next year!

Comments/Questions?

