Code-Copying Compilation in Production

An Experience Report

M. Anton Ertl, TU Wien
Bernd Paysan, net20

Objectives

execution time

I gforth-fast --no-dynamic (GCC-based interpreter)

® SwiftForth (conv. compiler)

» retargeting
effort

Performance (Core i5-1135G7)

32 Speedup over Gforth with code copying
Gforth threaded code B + code copying M + ip-update opt. |l + stack caching [l + Static superinst.
16 o SwiftForth B VFX Forth I gcc -O0 [gcc -O1 Il gcc -03
8
4
2
1-
1/2 1
1/4- benchgc cd1l6sim fcp bubble fib sha512

brainless lexex siev matrix pentomino

Porting effort

Gforth SwiftForth
AMDG64 ~ 50 SLOC, 2003 AMD®64 ~ 7000 lines
RISC-V 6 SLOC, 2017 IA-32 ~ 7000 lines

not counted Assembler, Disassembler

more Alpha, ARM A32/T32, ARM A64,
HPPA, IA-32, 1IA-64, Loongarch,
SPARC, PowerPC, PowerPC64

only threaded code 68000, MIPS,
unknown

Threaded code (gforth-fast -no-dynamic)

RISC-V machine code

| implementation C Code
| lit: addi ip,ip,16 '-!it;_ .
sd t os, 0(dsp) dg [6] “t 05"
VM code | d tos,-8(ip) +—— tog:i [-8]:
threaded code addi dsp, dsp, -8 dsp- p ’
o/ Tt ld a4, 0(ip) goto *ip[O]:
jr a4 ’

0

i
(+loop) implementation

c!
dup . .
\ (+loop) c! implementation

loophead dup implementation

Code copying (gforth-fast, disabled other optimizations)

VM instruction implementations

VM code static machine code

threaded code copied machine code i payload

lit addr »addi ip,ip,16 rest of threaded-code dispatch
[’o sd t os, 0(dsp)

i addr ld tos,-8(ip) | lit: addi ip,ip, 16

T addr \ addi dsp, dsp, -8 sd tos, 0(dsp)

d'up addr \ | payload ld tos,-8(ip)
\(+Ioop) —ddr \ c! payload addi dsp, dsp, -8

' ' Klit: Id 4, 0(i
G \ dup implementation SN i 24 (ip)

(+loop) payload

threaded-code dispatch J_Lit:

(+loop) payload
threaded-code dispatch

c! payload
threaded-code dispatch

dup payload
threaded-code dispatch

Relocatability

engi ne() engi ne2()
| implementation | implementation
| lit: addi ip,ip, 16 skip 4
sd tos, 0(dsp) | lit: addi ip,ip, 16
ld tos,-8(ip) sd tos, 0(dsp)
| addi dsp, dsp, -8 ld tos,-8(ip)
K ilit: I'd a4,0(ip) addi dsp, dsp, -8
] T a4 Klit: Id a4, 0(ip)
J lit: jr ad
(+loop) implementation J lit: .skip 4
c! implementation (+loop) implementation
dup implementation .skip 4
c! implementation
.skip 4

dup implementation

Why does it work?

e Register allocation
has to be the same at every goto * and label

e Instruction sets
Instructions are independent (with exceptions)
Compiler does not insert labels inside the exceptions

e If all else fails
Fall back to threaded code

Hurdles and workarounds

Code reordering
No loops and few ifs in VM instruction implementations
Extract such cases into separate functions

Code deduplication (one indirect branch for all goto *)
Have only one goto *, and copy that

Code duplication
Insert empty asm statements: duplication appears expensive

Bad copy propagation

wait for better compiler version
-fno-tree-vectorize

use a different compiler

__builtin___clear_cache() buggy
Use machine-specific code

Does it work with security features?

e No RWX memory (WX)
Jump through OS-specific hoops
RX mapping and RW mapping?

e Spectre

-mindirect-branch=thunk-inline

Slowdown factor 2.1-7.6 (without code copying 7.5—18.1) on Ryzen 3900X

e Control-flow protection
-fcf-protection=full woOrks
1.45x more instructions, 1.04x more cycles on Ryzen 8700G
Pointless in Gforth

Alternative approaches

Functions with tail calls instead of goto * in big function
Allows more code snippets
How to determine the end of a code snippet?

Extract code snippets from object files at build time
instead of from the executable code at run-time

Patch the code (copy-and-patch) instead of accessing VM code
Shorter code, fewer indirect jumps

No production system has used any such approaches and stuck with them
Yet

10

Optimizations

Gforth SwiftForth
code snippets GCC generated assembly
code generator code copying (& 500 lines) code copying
literal operands from threaded code patched
control flow through threaded code patched
threaded-code IP updates | optimized (4834/ — 316 lines) none exist
multi-state stack caching 3 registers X
static superinstructions 56 346 (1819 lines)
tail-call optimization X v

~ 5000 lines overall

11

Objectives

execution time

I gforth-fast --no-dynamic (GCC-based interpreter)

@ gforth-fast ® SwiftForth (conv. compiler)

> retargeting
effort

12

Conclusion

Objectives: good performance, small porting effort

Concatenate machine code snippets

VM-level immediate operands from VM code
Control flow through VM (threaded) code

fall back to threaded code if anything is amiss

Determine relocatability by comparing two copies
Workarounds for all hurdles to date have been found
Objectives: competetive with SwiftForth, 6-50 SLOC/port, many ports

In production since 2003

13

