
Code-Copying Compilation in Production

An Experience Report

M. Anton Ertl, TU Wien
Bernd Paysan, net2o

Objectives

execution time

porting/
retargeting
effort

gforth-fast --no-dynamic (GCC-based interpreter)

SwiftForth (conv. compiler)

VFX (conv.c.)

1

Performance (Core i5-1135G7)

41/

21/

1

2

4

8

16

32

benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
pentomino

sha512

Speedup over Gforth with code copying
Gforth threaded code + code copying + ip-update opt. + stack caching + static superinst.
SwiftForth VFX Forth gcc -O0 gcc -O1 gcc -O3

2

Porting effort

Gforth

AMD64 ≈ 50 SLOC, 2003
RISC-V 6 SLOC, 2017
not counted Assembler, Disassembler
more Alpha, ARM A32/T32, ARM A64,

HPPA, IA-32, IA-64, Loongarch,
SPARC, PowerPC, PowerPC64

only threaded code 68000, MIPS,
unknown

SwiftForth

AMD64 ≈ 7000 lines
IA-32 ≈ 7000 lines

3

Threaded code (gforth-fast –no-dynamic)

lit
0
i
c!
dup
(+loop)
loophead

VM code
threaded code

RISC-V machine code

i implementation

I_lit: addi ip,ip,16
 sd tos,0(dsp)
 ld tos,-8(ip)
 addi dsp,dsp,-8
 ld a4,0(ip)
 jr a4

(+loop) implementation

c! implementation
dup implementation

C Code

I_lit:
 ip += 2;
 dsp[0]=tos;
 tos=ip[-8];
 dsp--;
 goto *ip[0];

4

Code copying (gforth-fast, disabled other optimizations)

lit addr
0
i addr
c! addr
dup addr
(+loop) addr
loophead

VM code
threaded code

VM instruction implementations
static machine code

i payload
rest of threaded-code dispatch

I_lit: addi ip,ip,16
 sd tos,0(dsp)
 ld tos,-8(ip)
 addi dsp,dsp,-8
K_lit: ld a4,0(ip)
 jr a4
J_Lit:

(+loop) payload
threaded-code dispatch

c! payload
threaded-code dispatch

dup payload
threaded-code dispatch

addi ip,ip,16
sd tos,0(dsp)
ld tos,-8(ip)
addi dsp,dsp,-8
i payload
c! payload
dup implementation
(+loop) payload
threaded-code dispatch

copied machine code

5

Relocatability

engine()

i implementation
I_lit: addi ip,ip,16
 sd tos,0(dsp)
 ld tos,-8(ip)
 addi dsp,dsp,-8
K_lit: ld a4,0(ip)
 jr a4
J_lit:
(+loop) implementation
c! implementation
dup implementation

engine2()

i implementation
 .skip 4
I_lit: addi ip,ip,16
 sd tos,0(dsp)
 ld tos,-8(ip)
 addi dsp,dsp,-8
K_lit: ld a4,0(ip)
 jr a4
J_lit: .skip 4
(+loop) implementation
 .skip 4
c! implementation
 .skip 4
dup implementation

6

Why does it work?

• Register allocation
has to be the same at every goto * and label

• Instruction sets
Instructions are independent (with exceptions)
Compiler does not insert labels inside the exceptions

• If all else fails
Fall back to threaded code

7

Hurdles and workarounds

• Code reordering
No loops and few ifs in VM instruction implementations
Extract such cases into separate functions

• Code deduplication (one indirect branch for all goto *)
Have only one goto *, and copy that

• Code duplication
Insert empty asm statements: duplication appears expensive

• Bad copy propagation
wait for better compiler version
-fno-tree-vectorize

use a different compiler

• __builtin___clear_cache() buggy
Use machine-specific code

8

Does it work with security features?

• No RWX memory (W^X)
Jump through OS-specific hoops
RX mapping and RW mapping?

• Spectre
-mindirect-branch=thunk-inline

Slowdown factor 2.1–7.6 (without code copying 7.5–18.1) on Ryzen 3900X

• Control-flow protection
-fcf-protection=full works
1.45× more instructions, 1.04× more cycles on Ryzen 8700G
Pointless in Gforth

9

Alternative approaches

• Functions with tail calls instead of goto * in big function
Allows more code snippets
How to determine the end of a code snippet?

• Extract code snippets from object files at build time
instead of from the executable code at run-time

• Patch the code (copy-and-patch) instead of accessing VM code
Shorter code, fewer indirect jumps

• No production system has used any such approaches and stuck with them
Yet

10

Optimizations
Gforth SwiftForth

code snippets GCC generated assembly
code generator code copying (≈ 500 lines) code copying
literal operands from threaded code patched

control flow through threaded code patched
threaded-code IP updates optimized (+834/− 316 lines) none exist
multi-state stack caching 3 registers x
static superinstructions 56 346 (1819 lines)

tail-call optimization x !
≈ 5000 lines overall

11

Objectives

execution time

porting/
retargeting
effort

gforth-fast --no-dynamic (GCC-based interpreter)

SwiftForth (conv. compiler)

VFX (conv.c.)

gforth-fast

12

Conclusion

• Objectives: good performance, small porting effort

• Concatenate machine code snippets
VM-level immediate operands from VM code
Control flow through VM (threaded) code
fall back to threaded code if anything is amiss

• Determine relocatability by comparing two copies

• Workarounds for all hurdles to date have been found

• Objectives: competetive with SwiftForth, 6–50 SLOC/port, many ports

• In production since 2003

13

