
Code-Copying Compilation in Production

An Experience Report

M. Anton Ertl∗

TU Wien

Bernd Paysan

net2o

Abstract

A code-copying compiler implements a program-
ming language by concatenating code snippets pro-
duced by a different compiler. This technique has
been used in Gforth since 2003, with code snippets
generated by GCC. We have solved various chal-
lenges: in particular, which code snippets can be
copied and what to do about the others; and chal-
lenges posed by changes in compilers. The perfor-
mance of Gforth is similar to that of SwiftForth,
a commercial system with a conventional compiler;
the implementation effort is comparable to 1–2 tar-
gets for SwiftForth.

1 Introduction

Code copying is a programming language imple-
mentation technique where the compiler of the im-
plemented languate A concatenates code snippets
coming out of the compiler for language B. While
there have been a number of research papers about
this topic (see Section 8), we know of only one pro-
duction language implementation that has used this
approach for a long time: Gforth.

The present work is an experience report about
the use of code copying in Gforth: How does it com-
pare to a conventional compiler (Section 2)? Sec-
tion 3 explains the concepts of code copying, while
Section 4 discusses various implementation aspects.
We also discuss the problems from changes in com-
pilers (Section 5) and operating systems (Section 6)
and how we overcame them.

In addition to this experience report, this pa-
per also discusses alternative approaches (Section 7)
and related work (Section 8).

The present work also appears in the KPS 2025
proceedings, with the same content and different
formatting.

1.1 Is Gforth a production system?

Gforth is free software that has been developed
since 1992 and first released in 1996. As it is free
software, everybody can use it without contacting

∗anton@mips.complang.tuwien.ac.at

us, and few people do, so we do not know that
much about who uses it for what purpose. How-
ever, we know that it has been used by IBM and
Apple in their work on Open Firmware, and Forth,
Inc. (who develop SwiftForth, but also give Forth
courses) have given courses using Gforth, also in
the Open Firmware context. So: Yes, Gforth is a
production system.

2 Why not just write a con-

ventional compiler?

One reason why people may have avoided going
for a code-copying compiler is the assumption that
writing a conventional compiler will produce better
code, or require less effort. By “conventional” we
mean that there is a large amount of hand-written
architecture-specific code for each target architec-
ture in the compiler. So before we go into details
about code copying, we will address this concern.

2.1 Performance

Figure 1 shows the performance of the gforth-fast

engine of Gforth1 with various optimizations, of two
commercial conventional Forth compilers (Swift-
Forth and VFX Forth), and, for of GCC-12.2
gcc -O0, -O1, and -O3. All Forth systems use load-
and-go compilers (compile time is included in the
results), while GCC uses ahead-of-time compilation
(only the run-time is shown in the results).

Not all benchmarks are available in C, and not
all benchmarks run on all Forth systems, and the
missing cases are reflected by missing bars.

The data shown is the median of 30 runs for
each benchmark/system combination on a Core
i5-1135G7 (Tiger Lake); each bar represents the
number of cycles of Gforth with only code copying
divided by the number of cycles of the system
represented by the bar, i.e., the speedup of that
system over Gforth with only code copying. The
Gforth version used is 0.7.9_20250817, commit
4224ab5fafea970dade64b04493ef690da8b3c32

1Gforth also has an engine gforth intended for debugging.
All referenences to Gforth performance refer to gforth-fast.

Ertl, Paysan Code-copying compilation in production

41/

21/

1

2

4

8

16

32

benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
pentomino

sha512

Speedup over Gforth with code copying
Gforth threaded code + code copying + ip-update opt. + stack caching + static superinst.
SwiftForth VFX Forth gcc -O0 gcc -O1 gcc -O3

Figure 1: Speedup factor of various systems over Gforth with code copying, on a Core i5-1135G7 (Tiger
Lake)

compiled with gcc-11.4. The benchmarks are from
the Forth appbench suite (benchgc–fcp), Gforth’s
small (and mostly loop-dominated) benchmarks
(siev–fib), and two additional ones.

As can be seen, the performance of Gforth with
all optimizations is similar to that of SwiftForth,
which uses a conventional compiler, and typically
around half of the performance of VFX Forth, which
also uses a conventional compiler.

Before comparing Gforth with the others, let’s
first take a look at the variants of Gforth, starting
with the one with the best performance/effort:

Threaded code This is a fast interpretation tech-
nique for virtual-machine (VM) code, without
any machine-code generation (see Section 3.1).

Code copying This method concatenates code
snippets from the threaded code engine (see
Section 3). It requires an estimated 500 lines
of code in the Gforth source code. With this
method Gforth still accesses literal data and
performs control flow by accessing the VM
code; it therefore also maintains a VM instruc-
tion pointer (IP), and updates it once for every
VM instruction.

IP-update optimization This optimizaton re-
duces these IP updates. It was added by in-
serting 864 lines and deleting 316 lines in the
Gforth source code [EP24].

Stack caching (actually static multi-state stack
caching) eliminates many memory accesses to

stack items and stack-pointer updates [EG04a,
EG05]. The way this optimization as imple-
mented in Gforth requires code copying to
work.

Static superinstructions replace a sequence of
Forth words with an optimized sequence
[EGKP02]. Many of the benefits that static
superinstructions have originally provided are
now provided by code copying, the IP-update
optimization and static stack caching; there are
still cases where static superinstructions result
in shorter code, but this has not led to consis-
tent speedups in these measurements.

The code implementing stack caching and static
superinstructions is quite interweaved with the rest
of the code, so it is hard to give precise numbers
for their size, but we estimate [Ert24] that all four
optimizations combined require an estimated total
of 5000 lines of code.

SwiftForth’s compiler can be seen as a copy-and-
patch compiler, but with the code snippets written
by hand in assembly language and better result-
ing code than when patching using object file link-
age imformation (see Section 7.3). SwiftForth does
not have a VM interpreter substrate, and there-
fore does not have IP updates, so it gains the ben-
efits of the IP update optimization without hav-
ing to do anything. It deals with literal values
and control flow by patching the code. SwiftForth
does not perform multi-state stack caching, but it
makes extensive use of static superinstructions (346
rules in 1819 lines). Overall each of the IA-32 and

Ertl, Paysan Code-copying compilation in production

AMD64 targets of SwiftForth has about 7000 lines
of architecture-specific code [Ert24].

Gforth with all optimizations is competetive in
speed with SwiftForth, so apparently Gforth’s stack
caching provides enough speedup to compensate the
costs that Gforth incurs for literals and control flow.

VFX Forth performs register allocation of data-
stack items within a basic block, and inlines aggres-
sively; inlining is very helpful for idiomatic Forth
code, where calls and returns are the most frequent
basic block boundaries. Therefore inlining also en-
hances the effectiveness of VFX’s register allocator.
The speed advantage of VFX over Gforth and Swift-
Forth is a result of these optimizations. In particu-
lar, for the cd16sim benchmark there is one call site
that calls an empty definition and that is responsi-
ble for 2/3 of Gforth’s run-time on this benchmark,
while VFX inlines it away. We have no source code
for VFX and therefore cannot report numbers about
the size of its compiler. When asked about the ef-
fort to port VFX to ARM A64 (a currently ongoing
project), Stephen Pelc gave the qualitative state-
ment “far too much”.

VFX is faster than Gforth by typically around a
factor of 2. However, it is possible to perform in-
lining in Gforth, too, with direct performance ben-
efits as well as indirect benefits from better stack
caching. It will be interesting to see how far Gforth
(and code copying) can close the gap.

Gforth’s performance with all optimizations is
roughly comparable to that of gcc -O0 on those
benchmarks that are also available in C. gcc -O1

and gcc -O3 often produce significantly faster code;
sometimes they don’t, but the reasons for that are
beyond the scope of this paper.

2.2 Portability

A major reason to avoid implementing a conven-
tional compiler is portability/retargetability.

Gforth has supported as many architectures as we
could get our hands on, as long as gcc and some-
thing Unix-like (e.g., Cygwin for Windows) is avail-
able on the architecture. Gforth has supported the
following architectures with a code copying com-
piler: Alpha, ARM A32/T32, ARM A64, HPPA,
IA-32, IA-64, Loongarch, SPARC, PowerPC, Pow-
erPC64 (but we no longer can check for all archi-
tectures that they still work). Gforth supports all
architectures it does not know about by falling back
to threaded code, which is slower, but still works.

In particular, when IA-64 (launched 2001) and
AMD64 (launched 2003) became available to us in
2003, Gforth worked out of the box on these archi-
tectures2 using the unknown-architecture support,
likewise for ARM A64 in 2014 and RISC-V in 2017.

2We added 64-bit support in 1996 while doing the Alpha
port.

A few small changes enabled code copying3, and a
one-line change for configuring the number of reg-
isters for stack caching.

The benefit of code copying is that it reuses the
retargeting efforts of the compiler it is based on
(GCC or Clang in case of Gforth).

By contrast, SwiftForth has supported only IA-
32 until the 2020s, when they started working on
an AMD64 port (released on 2025-10-22). VFX has
supported IA-32 initially, later ARM A32, and, also
starting in the 2020s, AMD64. Both systems have
interactive cross-compilers for a number of embed-
ded targets.

The low number of desktop ports and the late
support for AMD64 may be due to lack of com-
mercial interest, but we think that the larger effort
required to retarget and maintain the compiler for
another architecture has something to do with it.
iForth, another conventional Forth compiler, got an
AMD64 port in 2009, but the IA-32 port was sub-
sequently dropped (last release with IA-32 support
in 2011).

2.3 Incremental development

Another benefit of code copying over writing a con-
ventional compiler is that it can be done step-by-
step: First add code copying, then add one opti-
mization (e.g., IP-update optimization), then the
next, etc., always with the fallback options of dis-
abling the optimization or completely falling back
on threaded-code interpretation.

By contrast, when coming from an interpreter,
the conventional model requires a big-bang ap-
proach where a complete code generator for one tar-
get has to be developed without reusing much from
an existing interpreter; and as long as you do not de-
velop code generators for all targets, you still need
to maintain the interpreter, as well as all the com-
piler targets. The latter will hopefully be helped by
designing the compiler for retargetability, but that
increases the complexity of the compiler framework.

3 What is code copying com-

pilation?

3.1 Threaded Code

The basis for Gforth’s code-copying implementation
is a threaded-code interpreter [Bel73] for Gforth’s
virtual machine (VM).

3For RISC-V, this was our first encounter with gcc-7 and
its more aggressive code duplication (Section 5.4); we needed
a little longer to find a workaround for that, but that’s not
specific to the architecture.

Ertl, Paysan Code-copying compilation in production

lit
0
i
c!
dup
(+loop)
loophead

VM code
threaded code

RISC-V machine code

i implementation

I_lit: addi ip,ip,16
 sd tos,0(dsp)
 ld tos,-8(ip)
 addi dsp,dsp,-8
 ld a4,0(ip)
 jr a4

(+loop) implementation

c! implementation
dup implementation

C Code

I_lit:
 ip += 2;
 dsp[0]=tos;
 tos=ip[-8];
 dsp--;
 goto *ip[0];

Figure 2: Threaded-code representation of VM code. Each box is a machine word. Slanted light blue

indicates an immediate operand of the preceding VM instruction.

As a running example, we look at the VM code
in Fig. 2. The first VM instruction in the example
is lit, which has an immediate operand 0. This
VM instruction pushes its immediate operand on
the data stack. It is represented by the address
of the machine code that implements it; in direct-
threaded code, every VM instruction is represented
by the address of the machine code that implements
it. In the case of lit, the implementation for RISC-
V (RV64G) is:

//C code

addi ip,ip,16 # ip += 2;

sd tos,0(dsp) # dsp[0] = tos;

ld tos,-8(ip) # tos = ip[-1];

addi dsp,dsp,-8 # dsp--;

ld ca,0(ip) # ca = ip[0];

jr ca # goto *ca;

This code uses register names that reflect their
roles: ip is the VM instruction pointer; tos is the
top of the data stack; dsp is the data stack pointer;
ca is the code address (of the next VM instruction).

The slanted blue instructions are the payload
which perform the actual work of the VM instruc-
tion as far as code copying is concerned. Other op-
timizations reduce that part further; e.g. the first
instruction updates IP, and the IP-update optimiza-
tion often optimizes it away.

The third instruction loads the immediate
operand (0) from the VM code by accessing it
through IP. This access of immediate operands and
control-flow operations through IP is still in Gforth
with all optimizations applied, and is the difference
between an interpreter-based code-copying system
and a copy-and-patch system (Section 7.3).

The bottom two (black) instructions perform the
dispatch to the next VM instruction. The first in-
struction loads the machine code address of the next

VM instruction, and the second instruction jumps
to it.

This assembly-language code can be generated
from the C code shown in the comments of the
assembly language. It uses the GNU C extension
“Labels as Values”,4 which allows jumping to the
address in ca with goto *ca5; this extension is also
supported by Clang, tcc, and icc.

The other VM instruction implementations have
the same pattern of payload, and dispatch. The last
VM instruction in our example, (+loop) is notable:
it is a VM-level conditional branch that branches
back to loophead (given as immediate operand) or
falls through to the next instruction. It is imple-
mented with the following code

addi ip,ip,16 # ip += 2;

...compute condition...

blt a5,zero,fallthrough # if (taken) {

ld ip, -8(ip) # ip = ip[-1];

ld ca, 0(ip) # ca = ip[0];

jr ca # goto *ca;

fallthrough: # }

ld ca,0(ip) # ca = ip[0];

jr ca # goto *ca;

If the conditional branch is taken, the new IP
is loaded from the immediate operand and a dis-
patch is performed. It is better to have separate
dispatches for the taken and the fallthrough cases
for branch prediction6 and because it allows to leave
away the fallthrough dispatch in code-copying.

4

https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

5The GCC maintainers call this a computed goto, al-
though it is more like a Fortran assigned goto.

6Even with history-based indirect-branch prediction,
branch predictors have an easier time if there are fewer tar-
gets for each indirect branch

https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

Ertl, Paysan Code-copying compilation in production

lit addr
0
i addr
c! addr
dup addr
(+loop) addr
loophead

VM code
threaded code

VM instruction implementations
static machine code

i payload
rest of threaded-code dispatch

I_lit: addi ip,ip,16
 sd tos,0(dsp)
 ld tos,-8(ip)
 addi dsp,dsp,-8
K_lit: ld a4,0(ip)
 jr a4
J_Lit:

(+loop) payload
threaded-code dispatch

c! payload
threaded-code dispatch

dup payload
threaded-code dispatch

addi ip,ip,16
sd tos,0(dsp)
ld tos,-8(ip)
addi dsp,dsp,-8
i payload
c! payload
dup implementation
(+loop) payload
threaded-code dispatch

copied machine code

Figure 3: Code copying.

3.2 Code copying

Most VM instructions do not perform VM-level
control flow, but just continue with the next VM
instruction. Code copying copies and concatenates
the machine code implementing the VM instruc-
tions, but in most cases without the dispatch code
at the end. Only taken branches (i.e. VM instruc-
tions that change IP to point to some other VM
instruction than the next one) need to perform a
dispatch.

Figure 3 shows this for our running example. The
VM code is conceptually the same as before, but for
each VM instruction the machine word now points
to the copied machine code instead of the original.

In particular, the copied code still has the IP,
which points to the threaded (VM) code, and it
accesses the immediate operands 0 and loophead

through it. The threaded code is also used on con-
trol flow: the VM-level conditional branch (+loop)

is taken, loads the target threaded-code address
loophead into IP, and then performs a threaded-
code dispatch, which loads the code address at loop-
head, which points to the start of the concatenated
code. All control flow in Gforth is performed with
threaded-code dispatches in this way.

The threaded-code slots for instructions other
than lit in this example are not accessed during
execution. Gforth keeps them around to simplify
the implementation.

At the end of the shown sequence the threaded-
code dispatch is copied. While this is necessary for
unconditional branches, it is not generally neces-
sary for conditional branches such as (+loop) (as
discussed above). However, the following VM in-
struction may make it necessary to perform a dis-
patch after the (+loop).

Code copying has also been called the memcpy()

method [RS96], selective inlining [PR98] and
(especially in Gforth) dynamic superinstructions
[EG03a].

3.3 Benefits over threaded code

The obvious benefit of code copying is that it
eliminates most threaded-code dispatches and re-
sults in straight-line execution of VM-level straight-
line code, avoiding the limit of typically one taken
branch per cycle. Another benefit is that the indi-
rect branches in most of the remaining dispatches
have only one target, vastly improving branch pre-
diction accuracy in CPUs without sophisticated
indirect-branch predictors, and still making life eas-
ier (and faster) for hardware with such branch pre-
dictors.

Another benefit is that code copying enables ad-
ditional optimizations that require code snippets
that are not represented as VM instructions (and
where introducing additional VM instructions with
threaded-code dispatch would make the optimiza-
tion unprofitable).

E.g., the IP update optimization [EP24] leaves
the IP update in front of most VM instruction im-
plementations away and replaces it with an IP up-
date by a larger amount for VM instructions that
actually use the IP.

As another example, stack caching as imple-
mented in Gforth inserts transitions between stack-
cache states where necessary. These transitions
do not have a VM instruction slot and therefore
can only be inserted when code-copying is enabled.
Gforth’s stack-caching implementation relies on be-
ing able to insert the transitions, so stack caching
is disabled when code copying is disabled [EG04a].

Ertl, Paysan Code-copying compilation in production

3.4 When is code copying appropri-

ate?

The shorter the VM instruction implementations
are, the larger the benefit of code copying over
threaded code, because the overhead of threaded-
code dispatch is relatively larger then.

Conversely, with long VM instruction implemen-
tations as in Tcl, whose VM instructions “can av-
erage hundreds of [machine] instructions” [VA04]
the benefit is small, and often does not amortize
the cost of copying the code or of increased I-cache
misses [VA04].

Another aspect is that a compiler (to VM code)
that uses more VM instructions, with each doing
less, has more opportunities to optimize the VM
code. This has been done for CPython recently7.
With expensive VM instruction dispatch, splitting
an existing VM instruction into several simpler ones
increases the cost, and the opimization must be
very good and must be applicable often to amor-
tize this cost. With code-copying, the dispatch cost
approaches 0, and such transformations become less
of a gamble.

4 Implementation of code

copying

4.1 Code organization

Gforth has a big function engine() that contains
all the code snippets (implementations of all VM
instructions, and additional snippets used by opti-
mizations), and little else.

Every code snippet has a label in front of it and
behind it:

L_before:

code snippet in C;

L_after:

threaded-code dispatch;

You can see that more concretely in Fig. 3.
The label before it obviously points to the start

of the code snippet.
Getting the right label for the end of the code

snippet was initially straightforward (up to gcc-3.1),
but later required extra work. If the source code
falls through to the label (i.e., it does not end in an
unconditional branch), like for the payload of most
VM instructions in Gforth, with some extra help
(see Section 5.4), the following label points right
behind the code snippet, but if the code snippet
cannot reach the label (e.g., because it ends in an
unconditional branch, e.g, in a threaded code dis-
patch), gcc-3.2 and following have reordered code.

7https://github.com/faster-cpython/

We solved this problem by taking the values of all
the labels, sorting them, and searching for the first
label behind the label at the start of the snippet.
This might include some unrelated code in cases
where the code snippet does not fall through to the
label, but in that case this is not a problem for
correctness (but possibly for relocatability, see Sec-
tion 4.5).

The function engine() has two code paths: the
first just returns a table containing all the labels, for
use in threaded-code generation and code-copying;
the second starts the execution of the code by per-
forming a threaded-code dispatch.

If code copying is disabled,8 the threaded
code address for each VM instruction just points
to the implementation of that instruction inside
engine(), and every threaded-code dispatch jumps
around within this function.

With code copying, the first threaded code dis-
patch in engine() jumps to the copy of the VM
instruction implementation and continues running
there, with control-flow changes by performing a
threaded-code dispatch.

4.2 Why does it work?

Why can we concatenate the code snippets pro-
duced in the way described above, and get code
that works?

In particular, won’t the register allocator have
different register allocations for the different code
snippets? Actually, at the start and, for fallthrough
snippets, the end of the snippet, the register allo-
cation has to be the same as at the start of every
other snippet, because the compiler has to consider
the possibility that every goto * jumps to every la-
bel whose address is taken. And the addresses of all
labels before and after all code snippets are taken
(to determine the code snippet address and length).

The code snippets that do not fall through end
in a goto * in Gforth. And the register allocation
at the goto * has to be compatible with that of all
the labels whose address is taken, or it would not
work even in ordinary use.

More precisely, engine() is compiled separately
from the code dealing with the threaded code, so
the C compiler has to assume that every goto * in
engine() can jump to any label whose address is
taken.

Therefore, at a goto * all variables are alive (i.e.,
read before being overwritten) that are alive at any
label whose address is taken, and each variable has
to be in the same location at all those labels and
all the instances of goto *. The code snippets that
fall through to their second label are followed by a
threaded-code dispatch:

8Gforth option --no-dynamic.

https://github.com/faster-cpython/

Ertl, Paysan Code-copying compilation in production

ca = ip[0];

goto *ca;

so at the label between the code snippet and the
dispatch, all the same variables are alive as at the
goto *, except possibly ca, but that is not alive
before the threaded-code dispatch, either. These
variables also all have to reside at the same loca-
tions, because the goto * could jump to them.

4.3 Fallback

There are cases where certain code snippets cannot
be copied (usually because they are not relocatable,
see Section 4.5). How does Gforth deal with that?

Gforth falls back to plain threaded code in these
cases: Append a threaded-code dispatch to the pre-
vious copied code snippet (unless the code snip-
pet already ends with a threaded-code dispatch),
and let the machine word representing the current
VM instruction point to the original implementa-
tion of the VM instruction (inside engine()) rather
than a copy). At run-time, the code performs the
threaded-code dispatch, which then jumps to the
original; that ends in another threaded-code dis-
patch, which may jump to code coming out of code-
copying, or to another original implementation.

If other optimizations are active, the preparation
for the fallback may require appending additional
code. E.g., the IP needs to be up-to-date before
the threaded-code dispatch, so in the presence of IP-
update optimization, an IP update may be inserted
before the threaded-code dispatch. Also, in Gforth
the plain threaded code always expects the stack
in the canonical state, so in the presence of stack
caching, a transition from the current stack state to
the canonical stack state may need to be inserted
before the threaded-code dispatch.

Gforth may also find that it cannot copy the
threaded-code dispatch. In that case it disables
code copying completely and falls back to threaded
code not just for individual VM instructions, but
for all of them.

The option to fall back to threaded code has
helped in various cases where things did not work
according to our expectations (e.g., see Section 5.4).
It means we always have a way to make Gforth
work, albeit not as fast as we would like.

4.4 Instruction sets

Code copying is based on the assumption that the
code snippets are independent and concatenable.
At the instruction-set level this is satisfied if indi-
vidual instructions are independent and concaten-
able. Some instruction sets have restrictions be-
tween groups of instructions. In this case a code

snippet must not contain a partial group, i.e., there
must not be a label within a group.

There are a few cases of such instruction-set re-
strictions:

Branch delay slots This is a misfeature of some
early RISC architectures, in particular, HPPA,
MIPS and SPARC: The branch instruction per-
forms the instruction behind it before contin-
uing at the target. This does not work with
code copying if the compiler puts a label be-
tween the branch and the instruction behind
it. However, the compilers we have used (most
recently gcc-14.2) do not do that.

Load delay slots This is a restriction of the
MIPS I instruction set (eliminated in MIPS II).
The instruction behind a load instruction is not
allowed to read the register written by the load
instruction. MIPS I also has some placement
restrictions on reading and writing the hi and
lo registers. Having labels right after the load
or in the shadow of hi/lo reads can result in
violating these restrictions in code copying. We
have not tested if compilers actually place la-
bels in a way that would lead to such violations.
Instead, these concerns along with the relo-
catability problems (Section 4.5) and the lack
of relevance of MIPS in Unix systems around
2003 were the reasons why we just configured
Gforth to fall back to threaded code on MIPS
(including the 64-bit MIPS port).

Instruction groups This is an IA-64 (aka Ita-
nium processor family) property. Instructions
within a group have restrictions on register us-
age that are intended to ensure that the in-
structions can be performed in one cycle with-
out register renaming.9 If a compiler put a
label inside a group, code copying could vio-
late these restrictions. Apparently the compil-
ers we used (gcc-3.3, gcc-4.1.3, gcc-4.3.2) put
stops (group boundaries) at labels, because in
our testing IA-64 has always worked fine. If
they did not, an easy fix would be to insert the
stops using asm statements or at the assembly-
language stage.

Based on the experiences with branch delay slots
and instruction groups, it seems that gcc develop-
ers also avoid splitting groups of instructions with
interdependencies by inserting a label inside these
groups, but if these instruction sets still were im-
portant targets, that might change.

9Groups are often confused with bundles, which are IA-
64’s encoding of three instructions in 128 bits. By contrast,
groups can be arbitrarily long, and can start and end some-
where in the middle of a bundle.

Ertl, Paysan Code-copying compilation in production

The problematic restrictions/features have not
spread to newer architectures and all the archi-
tectures with these restrictions in general-purpose
computers have been canceled in the meantime,
while older or contemporary architectures without
these restrictions thrive. So apparently the idea
of independent, concatenable instructions has some
merit, and we can expect that future instruction
sets will also exhibit this property and thus sup-
port code copying.

4.5 Relocatability

A code snippet must be relocatable in order to be
used in code copying, i.e., it must behave the same
way in the original place and when copied.

Non-relocatable code

The main problems here are references to addresses:
The code in the snippet must refer to addresses in-
side the snippet in a PC-relative way, and must
not refer to addresses outside the snippet in a PC-
relative way. Most architectures refer to other code
addresses in a PC-relative way, so the most com-
mon reason for non-relocatability is when the VM
instruction implementation performs a call to some
function (e.g., for performing I/O).

Accesses to global constants or to global vari-
ables in a PC-relative way can also cause non-
relocatability. Gforth avoids global variables for
that reason and because of multi-threading; it stores
some formerly global variables in a struct whose ad-
dress is stored in a local variable inside engine().
However, computing the FP negation and the FP
absolute value implicitly involve a constant that re-
sides in memory on AMD64 (with SSE2 FP), mak-
ing the implementations of these VM instructions
(fnegate and fabs) non-relocatable on this archi-
tecture.

The pointer-to-struct approach could also be used
for invoking functions without making the calling
code non-relocatable, but for now we have not done
that.

Note that asking the C compiler for position-
independent code does not mean that individual
code snippets are relocatable, even though the bi-
nary as a whole is, because position-independent
code may refer to code or data outside the code
snippet in a PC-relative way (and usually does),
while a relocatable code snippet must not do this.

Determining relocatability

How do we find out if a code snippet is relocatable
or not? The implementations of the VM instruc-
tions actually look as follows:

L_skip:

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

L_before:

code snippet in C

L_after:

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

threaded-code dispatch

We compile engine() with these pieces to as-
sembly language. Then we assemble the result
twice: Once with SKIP4 defined as empty string,
so the SKIP4s assemble to nothing, and the re-
sult is as discussed earlier; and once with SKIP4

defined as .skip 4, and with engine defined as
engine2, so as a result the object file contains a
function engine2() that has 16 bytes of padding
before and after each code snippet.10 We link both
object files into the final executable. The addresses
of the L_skip labels are taken and passed outside
engine(), so gcc cannot optimize the initial skip
away as dead code, and also because that usually is
the next label after a threaded-code dispatch.

We now have a function engine() without the
skips before and after the code snippets, and a func-
tion engine2() that has 16-byte skips before and
after each code snippet. We extract the labels from
each of the functions, and then compare the code
snippets: If a code snippet from engine() contains
exactly the same bytes as the corresponding code
snippet from engine2(), then the code snippet is
relocatable, otherwise it is not.

How does this work? If code from inside the code
snippet references a code or data address outside
the code snippet through a PC-relative address, the
offset of the relative address will be different be-
tween engine() and engine2(), because the tar-
get label will be farther away in engine2() thanks
to the skips. If there is an absolute reference (e.g.,
MIPS j instruction) to inside the code snippet, it
will be different between engine() and engine2(),
because the respective targets are at different ad-
dresses.

Even if the code snippet ends in an unconditional
branch and the C compiler puts some other code
behind that unconditional branch,11 this scheme
works: If the two code snippets compare equal, the

10In earlier times we compiled twice rather than assem-
bling twice, but compiling once is faster, and we do not need
to worry if the two compilation runs introduce unintended
differences in addition to the intended ones.

11We have not seen such an occurence yet.

Ertl, Paysan Code-copying compilation in production

code is relocatable. When used in a code-copying
system, the code snippet may have some unused
code behind the unconditional jump, but the gen-
erated code is still correct.

The reason for skipping 16 bytes is that this is a
common code-alignment value, so the skips would
not result in altered alignment (these days we ask
the compiler to align to 1-byte boundaries, so skip-
ping less might be sufficient). The reason for per-
forming the 16-byte skip as 4 4-byte skips is that for
some targets gcc counts the number of instructions
in asm statements, assumes that each instruction
takes at most 4 bytes, and generates code that re-
lies on this assumption.

The absolute target addresses for the MIPS j

and jal instructions have a catch: They work only
for targets in the same 256MB segment of the ad-
dress space. When we last looked, the functions
engine() and engine2() were linked in the same
256MB segment as the functions called by some of
the code snippets, and the code snippets would have
been classified as relocatable. However, they were
only relocatable within this 256MB segment. This
is another reason why we disabled code copying for
MIPS. An alternative would have been to allocate
the memory for the copied code in the same 256MB
segment as the original. Fortunately, among the ar-
chitectures we have looked at, only MIPS has this
property.

5 Compiler issues

In the previous section we have already mentioned
a few caveats about how compilers have interfered
with our initial assumptions about the generated
code, and what we do about that. This section
discusses additional issues.

We had quite a few problems with various gcc
versions in the 2000s, and for some we found ways
to deal with them, while some others were eventu-
ally fixed (after reappearing for several years). Also,
the rethoric about undefined behaviour started at
around that time and has spread and become more
aggressive since then,12, so at some point we ex-
pected to have to switch from using GNU C to
assembly language as a more reliable foundation
at some point [Ert14], essentially switching to a
conventional compiler. But this has not happened
(yet?), and actually, in the 2010s and 2020s only
few new problems have appeared, and we found
ways to deal with them. So GNU C seems to be a
relatively stable foundation after all, once one has
implemented various workarounds.

12http://blog.llvm.org/2011/05/
what-every-c-programmer-should-know.html

5.1 Code reordering

When we started, gcc arranged the basic blocks in
source order. This changed with gcc-3.2. This has
an effect on how we find the next label (Section 4.1).
But we also saw cases where the compiler moved
basic blocks from between L_before and L_after

to outside these labels, which caused problems.
To avoid such problems, we tried to have only

straight-line code in the VM instruction imple-
mentations. We extracted loops and most if-
statements into functions that are compiled sepa-
rately, and the VM instruction implementation only
contains a call to this function. This costs a little
performance (from the function call as well as turn-
ing the VM instruction implementation into non-
relocatable code on most architectures), but fortu-
nately the VM instruction affected by this are exe-
cuted relatively rarely.

However, conditional VM branches are executed
frequently, and in the ideal case they contain a con-
ditional branch, in the following form (also seen for
(+loop) in Section 3):

... skips ...

L_before:

... stack handling etc. ...

if (VM_branch_taken)

ip = ip[-1]; /*VM-branch target*/

threaded-code dispatch;

L_after:

... skips ...

threaded-code dispatch;

Ideally such VM-instruction implementations are
compiled such that the basic blocks in the machine
code are in the same order as in the source code,
so that the code controled by the if is between
L_before and L_after, and the second threaded-
code dispatch can be left away by code-copying in
the usual case. For now, gcc does it that way for our
code. But if gcc ever started changing this, a possi-
ble way to steer it back on the right path may be to
use __builtin_expect(VM_branch_taken,1) in-
stead of just VM_branch_taken.

5.2 Code alignment

Compilers insert padding to align branch targets
to instruction-fetch boundaries or cache-line bound-
aries. In particular, they do this for branch targets
behind unconditional branches and loop heads.

When code copying, the padding inserted
for the original code is often inappropriate
for the target code. Therefore, we sup-
press this padding by compiling engine() with
the options -falign-labels=1 -falign-loops=1

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

Ertl, Paysan Code-copying compilation in production

-falign-jumps=1.
Instead, our code-copying implementation per-

forms its own alignment (but on 2007-era proces-
sors where we measured the effects, the effects were
in the noise).

5.3 Code deduplication

Starting with gcc-3.0, gcc started to compile all the
goto * instances to an unconditional jump to one
instance of an indirect branch. The reason for this
probably was to reduce the control-flow edges in the
data-flow analysis, for m goto * and n labels from
nm to n + m.

In a number of gcc versions (up to the early gcc-
4.x releases), gcc then did not eliminate the un-
conditional jump afterwards, with some versions
eliminating them and some versions regressing, but
eventually the gcc maintainers managed to make
the unconditional-branch elimination stick, for our
code.

So if that is a solved problem, why do we mention
it here? We occasionally see this problem reappear
in some form, so it’s not completely gone.

E.g., when we managed to extend stack-caching
support on AMD64 to three registers, we found that
on AMD64 gcc compiled the goto * to an uncon-
ditional branch to common code that contains a lot
of register shuffling (with no overall effect) and fi-
nally the indirect branch. Apparently the register
shuffling made the common code so long that the
branch-elimination heuristic decided not to elimi-
nate the branch.

Fortunately, we found out that the register
shuffling (and, consequently, the unconditional
branch) go away with the compilation option
-fno-tree-vectorize. Apparently without this
option gcc tries to vectorize loads and stores of ad-
jacent values, and is less precise in the data flow
analysis for that than for individual values, leading
to the register shuffling.

For the problems in the gcc-3.x and 4.x era,
Gforth contains a workaround that has just one
threaded-code dispatch and jumps there from all
the VM instruction implementations. Gforth has
labels before and after this dispatch, and because
there is only one, gcc does not deduplicate it; this
allows Gforth to use it as a code snippet that
is appended whenever a threaded-code dispatch is
needed.

In order to work with this workaround and still
be relocatable, we implemented conditional VM
branches to just set the IP on a taken branch,
and then continue through L_after to the dispatch
code. This results in worse code than we would
have liked, but it was the best that was possible on
these compiler versions. This approach remains an
option when building Gforth,

5.4 Code duplication

On our first encounter with gcc-7, we found that the
generated code looked as a straightforward compiler
would generate for:

L_skip:

... skipping ...

code snippet in C;

threaded-code dispatch;

L_before:

code snippet in C;

threaded-code dispatch;

L_after:

threaded-code dispatch;

I.e., gcc-7 duplicated code reached by jumping
to a label and the same code being reached in a
straight-line way. This may be a useful optimiza-
tion, but it means that our code snippets now con-
tain the dispatch code, which is contrary to our in-
tentions.

We found the following workaround: In order to
convince gcc that this code duplication does not pay
off, after each label we insert 8 asm statements, each
containing a comment with a text unique to that
label (so gcc hopefully will not try to deduplicate
the code). Currently this is enough to convince gcc
to avoid the code duplication

5.5 Register allocation

Virtual machines have a number of “registers”,
which are implemented in C code as C (local) vari-
ables. At least for the frequently-used variables, it
would help performance if they were allocated to
real-machine registers.

Up to and including gcc-9, we explicitly assigned
registers to several of these variables on many plat-
forms with GNU C’s feature “Explicit Register
Variables”. In gcc-10 and later, disabling the ex-
plicit register variables produced better results than
enabling them.

With either approach, we have the following
problem: In the Gforth engine, gcc only used
callee-saved registers for these variables. With ex-
plicit register variables, because gcc does not ac-
cept caller-saved registers for those. But if left to
itself, gcc does not use caller-saved variables, either,
because engine() contains about 100 VM instruc-
tion implementations that perform calls, and these
calls apparently cause the compiler to avoid using
caller-saved registers for these variables, especially
for those that are used in < 100 VM instructions,
such as the return-stack pointer of Gforth. A prob-
lem here is that gcc does not know that VM in-
structions that access the return stack are used fre-
quently, while VM instructions that perform calls

Ertl, Paysan Code-copying compilation in production

tend to be used rarely. This is a problem even for
architectures like Alpha that have a lot of registers
in principle, but a calling convention with relatively
few callee-saved registers.

For being able to use additional registers for stack
caching without spilling other VM registers, we
use the following observation: All VM instruction
implementations that contain a call only use the
canonical state with one stack item in a register,
due to non-relocatability. So additional stack cache
registers are dead at the end of these VM instruc-
tion implementations, and there is no reason to pre-
serve these registers across the calls. But how do
we tell gcc about that?

L_skip:

... skipping ...

L_before:

code snippet containing a call;

asm("":"=X"(spb));

asm("":"=X"(spc));

L_after:

threaded-code dispatch;

The empty asm statements right before L_after

claim to overwrite spb and sbc (the variables hold-
ing the additional stack-cache items in some stack-
cache states). Therefore, these variables are dead
at the call and do not need to be preserved. This
means that this VM instruction implementation is
no hindrance to allocating spb and spc in a caller-
saved register. And indeed, one of these variables
is allocated by gcc in a caller-saved register.

Another way to influence the register allocator
that we have not used is the GNU C extension “La-
bel Attributes” (available since gcc-5). We can de-
clare the VM instruction implementations with calls
as being cold, and/or declare frequently-used VM
instruction implementations to be hot by following
the label with an attribute:

L_skip:

... skipping ...

L_before: __attribute__((cold));

code snippet containing a call;

L_after:

threaded-code dispatch;

With that, the register allocator is hopefully more
willing to use caller-saved registers for local vari-
ables of the VM.

5.6 Cache consistency

Many architectures do not guarantee cache con-
sistency between data and instruction caches, and
require a special piece of code between generat-

ing code and executing code; this incantation typi-
cally consists of a few lines of architecture-specific
(or, on some architectures worse, implementation-
specific or OS-specific) code, and for a long time
has been the only non-portable part of Gforth’s
code copying implementation. Gcc-4.3 introduced
__builtin___clear_cache(), which would elim-
inate this last piece of non-portability. We use
__builtin___clear_cache() on RISC-V.

Unfortunately, __builtin___clear_cache() is
not implemented correctly on at least Pow-
erPC64.13 We have switched Gforth back to us-
ing architecture-specific implementations of this
functionality (except on RISC-V). When imple-
menting your own code-copying compiler, check if
__builtin___clear_cache() is compiled to non-
empty code on each architecture that requires spe-
cial code to make the caches consistent. If it com-
piles to non-empty code, that code will hopefully
be correct.

Another problem with such architectures is multi-
threading: The code-generating thread must ensure
that the D-cache lines are written to a common
memory, and then the code-executing threads must
invalidate these regions in the I-cache (to get rid of
stale I-cache lines); due to prefetching and branch
prediction, this may even be necessary if code in the
address range has never been executed.

Until now we have ignored this problem, and re-
lied on our luck. Typically Gforth programs only
start subthreads after finishing compiling the source
code (and thus code generation), which may explain
why we have not seen any problems from that. A
system with on-demand code generation (the nar-
row meaning of JIT) may be more likely to en-
counter such problems, however.

5.7 Spectre

GCC offers mitigations against Spectre
v2 [KHF+19]. While all of these miti-
gations are expensive, because they dis-
able indirect-branch prediction, the option
-mindirect-branch=thunk-inline is less expen-
sive than -mindirect-branch=thunk, because the
latter makes the code snippets non-relocatable, so
every VM instruction performs an indirect branch,
while with the former option the relocatability of
the code snippets is not affected, resulting in fewer
indirect branches and therefore less slowdown.

On a Ryzen 3900X, we see slow-
downs by a factor of 2.1–7.6 from us-
ing -mindirect-branch=thunk-inline and
slowdown factors of 7.5–18.1 from using
-mindirect-branch=thunk.

However, if you want to implement your pro-
gramming language with Spectre mitigations, you

13https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93811

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93811

Ertl, Paysan Code-copying compilation in production

will prefer approaches such as copy-and-patch com-
pilation that avoid performing so many indirect
branches. You will also want to use mitigations
against other Spectre vulnerabilities (e.g., specula-
tive load hardening [ZBC+23] against Spectre v1),
which will introduce additional slowdowns for any
approach, but unfortunately, these other mitiga-
tions require more work than just setting a C com-
piler flag.

5.8 Control-flow protection

There are exploit techniques such as return-oriented
and jump-oriented programming that work by re-
turning or jumping to arbitrary code. To make
it more difficult to use these techniques, archi-
tectures and compilers offer ways to check that
branches and returns only jump to targets that
the compiler had in mind. E.g., gcc with the op-
tion -fcf-protection=full inserts an endbr64 in-
struction at every indirect-branch target (i.e., every
label in engine()), and the CPU can be told to re-
port an error on an indirect branch to some other
code. Endbr64 is an AMD64 instruction, some
other architectures have similar features.

This works with code copying: It copies the
endbr64 instruction to those places that the dis-
patch code will later indirect-branch to (and to ad-
ditional places).

We use -fcf-protection=none in Gforth, how-
ever, because Gforth offers enough gadgets14 al-
ready at the intended targets of indirect branches:
All the VM instructios; moreover, Gforth and its
VM is a low-level language that allows arbitrary
memory access within the process. So a Gforth
program that is exposed to untrusted input has to
successfully defend against an attacker at the front
line (source-level bounds checks etc.) and cannot
make life harder for the attacker who has breached
the front-line defense.

However, if your language is better
suited to defense-in-depth, you can enable
-fcf-protection=full, and they will work with
code copying. This feature may cost a little
performance, though: All the endbr64 instructions
need to be decoded and executed. In a small
experiment with Gforth on a Ryzen 8700G (Zen4),
we saw an increase in instruction count by a factor
1.45 and an increase in cycle count by a factor 1.04
from -fcf-protection=full. Narrower processors
may see a bigger slowdown (the instructions per
cycle on Zen4 increased from 3.83 to 5.34). VM
implementations with more machine instructions
per VM instruction will see a smaller effect.

14In the context of return-oriented and jump-oriented pro-
gramming, a gadget is a machine-code sequence that an at-
tacker may want to return/jump to.

5.9 Clang

Clang supports “Labels as Values”, and Gforth is
built with clang on platforms where GCC is not
available. However, using Clang poses a number of
problems:

• Clang wants to understand the assembly lan-
guage in asm statements, and stops compiling
when it sees asm("SKIP4"). One can work
around that, and that is done in the ports that
need clang, but we have not done that for the
experiments on Debian Linux in the following.

• Clang takes much longer than gcc to com-
pile Gforth’s engine() and also needs more
memory. As an example, for gforth-itc (an
indirect-threaded-code Gforth without code
copying nor other optimizations, and there-
fore without SKIP4), on a Ryzen 5800X gcc-
12.2 takes 3s and 346MB to compile engine(),
while clang-14.0.6 takes 699s and 5603MB. For
engine() for gforth-fast (with all optimiza-
tions enabled), clang takes 3399s and 18264MB
before it stops compiling because of SKIP4 (gcc
takes 26s and 1804MB).

• Clang generates a lot of register and memory
shuffling code, similar to what we have seen
with gcc-3.0. As a result, runnung the small
benchmarks on Clang-compiled gforth-itc

executes 6.4 times more AMD64 instructions
than on GCC-compiled gforth-itc and con-
sumes 4.2 times more Ryzen 5800X cycles.

As a result, Gforth selects GCC whenever it can.
We expect that the clang compilation speed will be
a problem for other code-copying compilers. The
bad code generation may be less pronounced in lan-
guage implementations that rely less on copy prop-
agation than Gforth. Clang may be more viable
when using tail calls instead of using one function
and “Labels as Values” (see Section 7.1).

6 OS issues

Over the years operating systems have restricted
executing dynamically-generated code more and
more. In the beginning, all memory was allocated
with read, write, and execute (RWX) permissions;
later, malloc() only allocated RW memory, and
one has to use mmap() to get RWX memory.

Recently, some operating systems (in partcu-
lar MacOS on Apple silicon) do not serve mmap()

calls that ask for RWX memory (this restriction is
also known as W^X). This is a problem for all sys-
tems with run-time code generation, not just code-
copying compilers, but, e.g., Java JITs as well. For
a single-threaded language implementation, one can

Ertl, Paysan Code-copying compilation in production

mprotect() the memory to W when generating the
code, and to X when executing it, but that does
not work for multi-threaded code, unless you want
to start a new page whenever you generate a new
piece of code.

MacOS provides a MacOS-specific API for JIT
compilers that supports switching the memory into
W in the code-generating thread and keeping it X
in the other threads, and Bernd Paysan has actually
invested the time to use this API.

Several of the BSDs also has W^X by default, but
allows to mark binaries such that RWX works. The
command for marking the binary is short, but spe-
cific to the BSD variant.15

An approach that may work without special APIs
is to have the code generation in one process and
the execution in a different process, both mapping
the same memory, but with different permissions.
Another option may be to map the same memory
within one process twice, at one address range with
W permission, and at the other address range with
X permission. We have not tried either approach.

If all else fails or you don’t want to jump through
the hoops that these operating systems put up,
code-copying based on threaded code always al-
lows you to fall back to plain threaded code, which
works fine on operating systems with the W^X re-
striction. E.g., Gforth-0.7 (which was not specifi-
cally designed for this circumstance) automatically
falls back to plain threaded code on MacOS on
Apple silicon: the mmap() call for allocating the
code memory fails, so Gforth-0.7 falls back to using
malloc(), and because that does not produce exe-
cutable memory on modern OSs, Gforth-0.7 turns
off dynamic code generation.

7 Alternative approaches

In this section we describe approaches that are in-
teresting but that are not implemented in produc-
tion Gforth.

7.1 Tail calls

Instead of putting all VM-instruction implementa-
tions in one function and using goto * for threaded-
code dispatch, one can also put each VM instruc-
tion implementation in a separate function and use
optimized tail-calls for threaded-code dispatch, as
follows:

15https://www.reddit.com/r/BSD/comments/10isrl3/

notes_about_mmap_mprotect_and_wx_on_different_bsd/

typedef void (*vm_inst)(void **ip,

long *dsp, long tos);

void lit(void **ip, long *dsp, long tos)

{

... payload including ip update ...;

(*(((vm_inst *)ip)[0]))(ip,dsp,tos);

}

The last line of the function performs the
threaded-code dispatch. The tail-call must be op-
timized into a jump, otherwise the C stack grows
and eventually overflows. When we first considered
this approach [Ert95], GCC did not tail-call opti-
mize such code, but in the meantime it does, as
does Clang [XK21]; Clang even provides a way to
require that a call is tail-call-optimized, and will
report an error if it cannot meet this requirement.

The VM registers are passed as parameters, at
least as long as the calling convention supports pass-
ing them in machine registers. With gcc, additional
VM registers could be stored in global explicit reg-
ister variables; on AMD64 this results in 12 general-
purpose and 8 floating-point registers available for
VM registers. Clang does not support explicit reg-
ister variables, but it supports using a calling con-
vention for these functions and calls that uses as
many registers as possible for parameter-passing.

So for dealing with VM registers efficiently, one
has to pass VM-registers in parameters or keep
them in global register variables with compiler-
dependent and ABI-dependent code, but that is a
relatively small effort.

With the tail-calling approach, there is a fixed al-
location of VM registers to machine registers, either
coming from the position in the parameter list, or
from the explicit register allocation.

We expect that the VM instruction implementa-
tions can be compiled faster and with less memory
with the tail-calling approach, because the compiler
will hopefully not try to perform data-flow analysis
between the functions, while it tries to do it when
the implementations are all contained in one func-
tion. We can then squander the compilation speed
gain on introducing more code snippets, for vari-
ous optimization purposes (Xu and Kjolstad report
using 98831 code snippets [XK21]).

Another benefit is that we should see no
or little of the register-and-memory shuffling
that we see with Clang, or with gcc without
-fno-tree-vectorize.

So far you have only seen how tail calls can be
used to implement threaded code. How can it be
used for code-copying compilation?

In order to do that, we need a way to get rid of
the dispatch part of the implementation. Unfortu-

https://www.reddit.com/r/BSD/comments/10isrl3/notes_about_mmap_mprotect_and_wx_on_different_bsd/
https://www.reddit.com/r/BSD/comments/10isrl3/notes_about_mmap_mprotect_and_wx_on_different_bsd/

Ertl, Paysan Code-copying compilation in production

nately, compilers tend to mix the instructions from
the payload part with those from the dispatch part;
just inserting a label between them will not work,
because there is nothing that jumps to this label.
Maybe an asm statement can be made to act as a
barrier, but preliminary experiments failed to pro-
duce satisfying results.

One way that may be more promising is to have,
in addition to functions that end in a threaded-code
dispatch (to have a fallback option), variants in-
tended only for code copying that end in a direct
[XK21]) or indirect tail-call without threaded-code
dispatch. On many architectures this is just one in-
struction, that must be last in the function. How-
ever, there are exceptions: Some architectures have
delayed branches (HPPA, MIPS, SPARC); some
architectures require two instructions for indirect
branches (PowerPC, IA-64). In some programming
models, a direct jump to a function is expressed as
an indirect jump to a target loaded from the global
offset table (GOT), and as a result the direct jump
also is expressed with more than one instruction.

Once we have solved the problem of keeping the
payload separate from the tail call, how do we know
where the tail call starts so that we can use the
code between the start of the function and this in-
struction as code snippet? Xu and Kjolstad extract
the function size (and the code) from the object
file (see Section 7.2), and apparently use their own
architecture-specific knowledge about the size of the
last instruction to determine where it starts. A way
to determine the size of this last instruction may be
to have a function that performs only this tail-call,
and look at its size.

7.2 Snippets from object files

Gforth extracts code snipets from the executable
at run-time and has some startup overhead while
it examines all the code snippets for relocatability
and performs its table setup.

An alternative is to extract code snippets from
object files [NHCL98, XK21] at system build time
using the Binary File Descriptor library (GNU
BFD). One advantage of this approach is that the
object file contains additional information, such as
the function size, or linkage information for symbols
external to the object file.

7.3 Copy-and-patch compilation

Gforth accesses immediate operands and control-
flow information through IP. This requires a register
for IP, results in less efficient accesses to immediate
operands and less efficient control flow than with
ordinary compilers, and requires keeping the VM
code around.

An alternative is to have code snippets that con-
tain dummy immediate arguments and perform
control flow directly to dummy targets, and then
patch the constants or target addresses in these
code snippets with the actual values, resulting in
copy-and-patch compilation.

One approach for copy-and-patch compilation
has been based on using the linkage information
in object files [NHCL98, TCL+00, XK21]. Refer-
ences to external symbols are used for patchable
immediate operands and patchable control-flow tar-
gets. The linkage information describes where to
patch and how to patch (e.g., absolute or rela-
tive address). This requires some architecture/ABI-
specific work, but ABIs have a finite number of relo-
cation types (e.g., 52 in the AMD64 ABI [LMG+])
and only a few are actually used in the code snip-
pets.

However, by refering to an external symbol the
copy-and-patch compiler usually cannot patch the
immediate operand of instructions like RISC-V’s
addi. The external symbol is a 64-bit (or 32-bit)
value, while the immediate operand of addi is 12
bits long, so the addition of a constant (whatever
its size) is compiled to several instructions.

Another approach is to start with code snippets
delimited by labels in one C function, like Gforth’s
code copying uses, but perform patching in addition
[VA04, EG04b].

We implemented copy-and-patch compilation for
Gforth in a prototype for IA-32 and PowerPC us-
ing the latter approach [EG04b]. This work was
based on Gforth’s approach of extracting code snip-
pets from the executable at system startup time.
The engine() function was compiled thrice, twice
with the same immediate arguments, and once with
different immediate arguments. The first two ver-
sions were compared to determine relocatability, the
third version was compared to find out the place-
holders of the immediate arguments.

This approach can make use of the RISC-V addi

instruction, but needs to fall back to code that uses
several instructions when the immediate operand
becomes too large. It needs quite a bit of knowl-
edge about the instruction encodings, in particular,
the sizes of the immediate-operand fields. We con-
sidered determining the encoding and size by vary-
ing the immediate operands a lot more, but did not
implement that idea; dealing with each architecture
manually is probably less work.

We originally intended to turn this copy-and-
patch compiler into a production engine for Gforth,
but in those years several GCC releases resulted
in falling back to threaded code, so the copy-and-
patch approach looked too brittle, and we let it bit-
rot. Later, the rethoric by the advocates of C code
without undefined behaviour kept the distrust in
GCC high. If we had continued to maintain this

Ertl, Paysan Code-copying compilation in production

engine, maybe we could now report on its success
and the hurdles we had to overcome. Or maybe it
would have been a bridge to far.

8 Related Work

GCC-2.0 (released February 1992) introduced “La-
bels as Values”, which not only proved useful for
implementing threaded code (we started the Gforth
project[Ert93] in July 1992), but also for compiling
by copying compiler-generated code snippets be-
tween two labels, with all the code snippets being
within a function. This method was first outlined
by Rossi and Sivalingam [RS96, Section 2.5], who
refer to an unpublished discussion between Xavier
Leroy and Kenneth Oksanen. Piumarta and Ric-
cardi provided a more elaborate treatment [PR98],
with deduplication of code sequences.

Ertl and Gregg implemented code-copying in
Gforth, and in the beginning the main benefit
was in indirect branch prediction accuracy [EG03a,
EG03b, CEG07]; it turned out that leaving away
deduplication (or conversely, introducing replica-
tion, as we framed it) helped the branch predictors
at the time. Indirect branch predictors have im-
proved a lot in general-purpose processors [RSS15],
but code copying still provides a good speedup.16

Once you have code copying, you can eliminate
instruction-pointer (IP) updates, either by leaving
away the unneeded VM instruction slots [PR98], or
by replacing several IP updates with a combined
one [EP24]. While IP updates play a minor role for
performance on CPUs from the 2000s, they can be
the decisive bottleneck on loop-dominated bench-
marks in the 2020s.

Another optimization that was facilitated by code
copying is multi-state stack caching [Ert95, EG04a,
EG05].

Tempo is a partial evaluator that uses code copy-
ing and patching by extracting information from
object files [NHCL98]; Tempo was later used to spe-
cialize an interpreter into a compiler [TCL+00].

Iliasov [Ili03] describes a copy-and-patch compiler
with a minimal patching component: Only literals
need to be patched; control flow is performed by
performing indirect jumps to addresses provided as
literals.

QEMU is a full-system emulator. It is a pro-
duction system with a long history, and has many
more users than Gforth. QEMU can emulate ma-
chines with a different instruction set than the host
machine. It uses dynamic translation techniques for
that, originally implemented in its Dyngen compo-
nent [Bel05] using code-copying and patching, sim-
ilar to what we described in Section 7.2 and 7.3.

16See Section 2.1 and http://www.complang.tuwien.ac.at/
anton/interpreter-branch-pred.txt.

But Dyngen uses ordinary functions, not tail-calling
functions, and has to get rid of the function pro-
logue and epilogue. Dyngen is gcc-3.x-specific, and
it apparently was too difficult to adapt it to newer
gcc versions or other compilers, so it was replaced
with TCG in QEMU-0.10.0 released in 2009. TCG
is based on QOP by Paul Brook, who described it
as “Hand written code generator”17, so TCG prob-
ably is not based on copying and pasting compiler-
generated code.

In Gforth we have dealt with changes in GCC by
finding workarounds, or, for versions where we were
not successful, by falling back to threaded code.
Another approach is to actually define the proper-
ties that a compiler’s code generation should have
to support code copying; then modify a compiler to
provide those properties (when asked for it), and
report an error if it fails to provide the properties.
This approach has been explored by Prokopski and
Verbrugge [PV07, PV08], but their patches have not
been integrated into GCC.

Several code-copying JavaVM implementations
have been implemented, among them SableVM
[GH03] and the Cacao interpreter [ETK06]. A par-
ticular challenge solved by these implementations
was quickening of VM instructions, where VM in-
structions rewrite themselves into faster code on
first execution. SableVM stopped being maintained
after the research project ended (last release 2007).
The Cacao interpreter bit-rotted while the main
thrust of Cacao continued to use conventional code
generation technology.

Maxine is a Java VM implementation with two-
level compilation (baseline and optimizing com-
piler), where the baseline compiler is a copy-and-
patch compiler that uses templates written in Java
and where the code is generated by the optimizing
compiler (which uses conventional compiler tech-
niques) or by HotSpot [WHV+13].

Xu and Kjolstad implement two copy-and-patch
compilers: One that directly compiles from the ab-
stract syntax tree (AST) without going through a
VM and one for WebAssembly. Their technique
works by having each code snippet (called stencil in
the paper) in a tail-calling function with references
to external symbols as placeholders for patching,
and extracting the code snippets from object files.
They use 1666 code snippets for the WebAssem-
bly compiler, and 98831 code snippets for the AST
compiler; the latter is notable, because it is beyond
practical for the technique where all code snippets
are in one function.

17https://qemu-devel.nongnu.narkive.com/bCtjCaPs/
hand-written-code-generator-2

http://www.complang.tuwien.ac.at/anton/interpreter-branch-pred.txt
http://www.complang.tuwien.ac.at/anton/interpreter-branch-pred.txt
https://qemu-devel.nongnu.narkive.com/bCtjCaPs/hand-written-code-generator-2
https://qemu-devel.nongnu.narkive.com/bCtjCaPs/hand-written-code-generator-2

Ertl, Paysan Code-copying compilation in production

9 Conclusion

Code-copying compilers make retargeting of the
compiler much easier by using code snippets com-
ing from a different compiler. Gforth demonstrates
that code-copying without patching can produce
code with similar performance as a compiler with
a hand-written architecture-specific code generator.
Gforth has used code copying since 2003, on many
architectures, and has dealt with many GCC ver-
sions in those years. If all else fails, Gforth can fall
back to threaded code, but it usually does not have
to.

Copy-and-patch compilation promise an improve-
ment in performance over copying without patch-
ing (as in Gforth) at a moderate increase in
architecture-specific code. However, while there
have been a number of publications about this tech-
nology, no production system is known to us that
currently uses it.

References

[Bel73] James R. Bell. Threaded code. Com-
munications of the ACM, 16(6):370–
372, 1973. 3.1

[Bel05] Fabrice Bellard. QEMU, a fast and
portable dynamic translator. In Freenix
Track of Usenix Annual Technical Con-
ference, pages 41–46, 2005. 8

[CEG07] Kevin Casey, M. Anton Ertl, and David
Gregg. Optimizing indirect branch
prediction accuracy in virtual machine
interpreters. ACM Transactions on
Programming Languages and Systems,
29(6):37:1–37:36, October 2007. 8

[EG03a] M. Anton Ertl and David Gregg. Op-
timizing indirect branch prediction ac-
curacy in virtual machine interpreters.
In SIGPLAN Conference on Program-
ming Language Design and Implemen-
tation (PLDI’03), 2003. 3.2, 8

[EG03b] M. Anton Ertl and David Gregg.
The structure and performance
of Efficient interpreters. The
Journal of Instruction-Level Par-
allelism, 5, November 2003.
http://www.jilp.org/vol5/. 8

[EG04a] M. Anton Ertl and David Gregg. Com-
bining stack caching with dynamic su-
perinstructions. In Interpreters, Virtual
Machines and Emulators (IVME ’04),
pages 7–14, 2004. 2.1, 3.3, 8

[EG04b] M. Anton Ertl and David Gregg. Re-
targeting JIT compilers by using C-
compiler generated executable code. In
Parallel Architecture and Compilation
Techniques (PACT’ 04), pages 41–50,
2004. 7.3

[EG05] M. Anton Ertl and David Gregg. Stack
caching in Forth. In M. Anton Ertl, ed-
itor, 21st EuroForth Conference, pages
6–15, 2005. 2.1, 8

[EGKP02] M. Anton Ertl, David Gregg, Andreas
Krall, and Bernd Paysan. vmgen —
a generator of efficient virtual machine
interpreters. Software—Practice and
Experience, 32(3):265–294, 2002. 2.1

[EP24] M. Anton Ertl and Bernd Paysan.
The Performance Effects of Virtual-
Machine Instruction Pointer Updates.
In Jonathan Aldrich and Guido Sal-
vaneschi, editors, 38th European Con-
ference on Object-Oriented Program-
ming (ECOOP 2024), volume 313 of
Leibniz International Proceedings in In-
formatics (LIPIcs), pages 14:1–14:26,
Dagstuhl, Germany, 2024. Schloss
Dagstuhl – Leibniz-Zentrum für Infor-
matik. 2.1, 3.3, 8

[Ert93] M. Anton Ertl. A portable Forth en-
gine. In EuroFORTH ’93 conference
proceedings, Mariánské Láznè (Marien-
bad), 1993. 8

[Ert95] M. Anton Ertl. Stack caching for in-
terpreters. In SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI’95), pages 315–
327, 1995. 7.1, 8

[Ert14] M. Anton Ertl. How to get rid of C. In
30th EuroForth Conference, pages 63–
65, 2014. 5

[Ert24] M. Anton Ertl. Interpreter vs. compiler
performance at run-time. In Tagungs-
band des Jahrestreffens 2024 der
GI-Fachgruppe “Programmiersprachen
und Rechenkonzepte”, INSIGHTS —
Schriftenreihe der Fakultät Technik,
pages 7–12, 2024. 2.1

[ETK06] M. Anton Ertl, Christian Thalinger,
and Andreas Krall. Superinstructions
and replication in the Cacao JVM inter-
preter. Journal of .NET Technologies,
4:25–32, 2006. Journal papers from
.NET Technologies 2006 conference. 8

Ertl, Paysan Code-copying compilation in production

[GH03] Etienne Gagnon and Laurie Hendren.
Effective inline-threaded interpretation
of Java bytecode using preparation se-
quences. In Compiler Construction
(CC ’03), volume 2622 of LNCS, pages
170–184. Springer, 2003. 8

[Ili03] Alex Iliasov. Templates-based portable
just-in-time compiler. SIGPLAN No-
tices, 38(8):37–43, August 2003. 8

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh,
Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative
execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.
5.7

[LMG+] H.J. Lu, Michael Matz, Milind Girkar,
Jan Hubička, Andreas Jaeger, and
Mark Mitchell, editors. System
V Application Binary Interface —
AMD64 Architecture Processor Supple-
ment (With LP64 and ILP32 Program-
ming Models). 7.3

[NHCL98] François Noël, Luke Hornof, Charles
Consel, and Julia L. Lawall. Auto-
matic, template-based run-time spe-
cialization: Implementation and ex-
perimantal study. In IEEE Interna-
tional Conference on Computer Lan-
guages (ICCL ’98), pages 123–142,
1998. 7.2, 7.3, 8

[PR98] Ian Piumarta and Fabio Riccardi. Opti-
mizing direct threaded code by selective
inlining. In SIGPLAN ’98 Conference
on Programming Language Design and
Implementation, pages 291–300, 1998.
3.2, 8

[PV07] Gregory B. Prokopski and Clark Ver-
brugge. Towards GCC as a compiler
for multiple VMs. In Proceedings of the
GCC Developers’ Summit, pages 117–
129, 2007. 8

[PV08] Gregory B. Prokopski and Clark Ver-
brugge. Compiler-guaranteed safety
in code-copying virtual machines. In
Compiler Construction (CC’08), pages
163–177. Springer LNCS 4959, 2008. 8

[RS96] Markku Rossi and Kengatharan
Sivalingam. A survey of instruction
dispatch techniques for byte-code inter-
preters. Technical Report TKO-C79,

Faculty of Information Technology,
Helsinki University of Technology, May
1996. 3.2, 8

[RSS15] Erven Rohou, Bharath Narasimha
Swamy, and André Seznec. Branch pre-
diction and the performance of inter-
preters — don’t trust folklore. In Code
Generation and Optimization (CGO),
2015. 8

[TCL+00] Scott Thibault, Charles Consel, Ju-
lia L. Lawall, Renaud Marlet, and
Gilles Muller. Static and dynamic pro-
gram compilation by interpreter spe-
cialization. Higher-Order and Symbolic
Computation, 13(3):161–178, Septem-
ber 2000. 7.3, 8

[VA04] Benjamin Vitale and Tarek S. Abdel-
rahman. Catenation and specialization
for Tcl virtual machine performance.
In IVME ’04 Proceedings, pages 42–50,
2004. 3.4, 7.3

[WHV+13] Christian Wimmer, Michael Haupt,
Michael L. Van De Vanter, Mick Jor-
dan, Laurent Daynès, and Douglas Si-
mon. Maxine: An approachable vir-
tual machine for, and in, Java. ACM
Transactions on Architecture and Code
Optimization, 9(4):30:1–30:24, January
2013. 8

[XK21] Haoran Xu and Fredrik Kjolstad. Copy-
and-patch compilation. Proc. ACM
Program. Lang., 5(OOPSLA):136:1–
136:30, October 2021. 7.1, 7.2, 7.3

[ZBC+23] Zhiyuan Zhang, Gilles Barthe,
Chitchanok Chuengsatiansup, Pe-
ter Schwabe, and Yuval Yarom.
Ultimate SLH: Taking speculative
load hardening to the next level. In
32nd USENIX Security Symposium
(USENIX Security 23), pages 7125–
7142, Anaheim, CA, August 2023.
USENIX Association. 5.7

	Introduction
	Is Gforth a production system?

	Why not just write a conventional compiler?
	Performance
	Portability
	Incremental development

	What is code copying compilation?
	Threaded Code
	Code copying
	Benefits over threaded code
	When is code copying appropriate?

	Implementation of code copying
	Code organization
	Why does it work?
	Fallback
	Instruction sets
	Relocatability
	Non-relocatable code
	Determining relocatability

	Compiler issues
	Code reordering
	Code alignment
	Code deduplication
	Code duplication
	Register allocation
	Cache consistency
	Spectre
	Control-flow protection
	Clang

	OS issues
	Alternative approaches
	Tail calls
	Snippets from object files
	Copy-and-patch compilation

	Related Work
	Conclusion

