Blending Forth

mixing other languages and Forth

EuroForth'25 conference 2025-09

Ulrich Hoffmann

Overview

e Introduction

* Implementing Forth in other languages

* abstraction and representation
* blending Forth

e demo

e conclusion

Day of the Week and Zeller’s congruence

13(m + 1 K J
h — (q-—- ()J + K + {—J -+ 1 —QJ) mod 7,

5 4

— — p—

function ZellerDayOfWeek(q, m, y: Integer): Integer;

begin

K := y mod 100; // year of the century
J := y div 100; // zero-based century
h := (g + ((13 * (m + 1)) div 5) + K +

(K div 4) + (J div 4) - (2 * J)) mod 7;

ZellerDayOfiWeek := h
end;

Day of the Week and Zeller’s congruence

13(m +1 K J
h(ﬁ* ()J-i—K----l + ——2J)nmdﬂ

5 4| |4

—_

In standard Pascal (ISO 7185 and its descendants like Free Pascal,
Turbo Pascal, Delphi) the mod operator always returns a result with the
same sign as the dividend (the left operand).

Writeln(7 mod 3); // 1

Writeln(-7 mod 3); // -1

Writeln(7 mod -3); // 1
()

Writeln(-7 mod -3); // -1

Day of the Week and Zeller’s congruence

13(m + 1 K J
h — (q-—- ()J + K + {—J -+ 1 —QJ) mod 7,

5 4

— — p—

function ZellerDayOfWeek(q, m, y: Integer): Integer;

begin

K := y mod 100; // year of the century
J := y div 100; // zero-based century
h := (g + ((13 * (m + 1)) div 5) + K +

(K div 4) + (J div 4) - (2 * J)) mod 7;

ZellerDayOfiWeek := h
end;

Day of the Week and Zeller’s congruence

13(m + 1 K J
h — (q-—- ()J + K + {—J -+ 1 —QJ) mod 7,

5 4

— — p—

function ZellerDayOfWeek(q, m, y: Integer): Integer;

begin

K := y mod 100; // year of the century
J := y div 100; // zero-based century
h := (g + ((13 * (m + 1)) div 5) + K +

(K div 4) + (J div 4) + (5 * J)) mod 7;

ZellerDayOfiWeek := h
end;

Implementing Forth in Python

ongoing adventure to implement Forth in different languages
Assembler
Forth itself
Emacs-Lisp
Golang
Python

Insightful discoveries

Implementing Forth in Python

 How to implemement stack and return-stack?
 How primitives?

 How the dictionary?

 How the inner and out interpreter?

e What about BASE and STATE?

 How to read characters one-by-one?

Factorial

fac ((n -- n!)
?2dup IF dup 1- recurse * exit THEN 1 ;

10 fac . 3628800 ok @

Abstraction and Representation

* You take the elements of the implementation
language to realize the elements of the target

language Forth.
e data refinement

* operator refinement

Data Refinement depends on type

signed int unsigned int

| | |

abstraction abstraction abstraction
function function function

0000000000101010

111111711711111111

1111117171711111111

abstraction function sometimes called retrieval function

Data Refinement

false true true

|]

abstraction abstraction abstraction representation
function function function relation

l

representation relation sometimes called refinement relation

0000000000000000

11111711111111111 0000000000101010

Operator Refinement

t(oc Q1) = (reto)\(ret 1)
ret\o

the abstract world

- s W
V)
L?J\ AMVTV (U, g
I I retT
: V/ : K
= : (0,7)
I l ret |
iret i ret i
| | I
| | I
| | l

the concrete world

Data Refinement

65535

abstraction abstraction abstraction
function function function

Python int 42 Python int -1 Python int 65535

Factorial

: fac ((n -- n!)
?2dup IF dup 1- recurse * exit THEN 1 ;

10 fac . 3628800 ok @

100 fac .
03326215443944152681699238856266700490715968264381621468592963895217599993229915608

941463976156518286253697920827223758251185210916864000000000000000000000000 ok @

Implementing Forth in Python

e Stack

e Primitives

def plus(s): -1 . -1 ok @
e o 34+ .7 ok @
s.stack[-2:] [s.stack[-2] + s.stack[-1]] 1 u. 1 ok @

But is it Forth?

Let’s run the Forth-94 core test.

But is it Forth?

inc lude
TESTING:
TESTING:
TESTING:
TESTING:

INCORRECT
INCORRECT
INCORRECT
INCORRECT
INCORRECT
INCORRECT
INCORRECT
INCORRECT
INCORRECT
INCORRECT
INCORRECT
INCORRECT
INCORRECT

core.fs
CORE WORDS

BASIC ASSUMPTIONS
BOOLEANS:
2% 2/ LSHIFT RSHIFT

WRONG NUMBER OF RESULTS: { MSB BITSSET? —> 0 0 }
TESTING: COMPARISONS: 0= = 0< < > U< MIN MAX
RESULT:
RESULT:
RESULT:
RESULT:
RESULT:
RESULT:
RESULT:
RESULT:
RESULT:
RESULT:
RESULT:
RESULT:
RESULT:

@ the int -1 does not represent an unsigned value.

R Yy Syt Syl S S Sy S S S S

INVERT AND OR XOR

MIN-INT 0= —> <FALSE> }
MIN-INT @< —-> <TRUE> }

MAX-INT @< —-> <FALSE> }
MIN-INT @ < —> <TRUE> }
MIN-INT MAX-INT < —-> <TRUE> }
0 MAX-INT < —> <TRUE> }
MAX—INT MIN-INT < —-> <FALSE> }
MAX-INT @ < —> <FALSE> }
MIN-INT MAX-INT > -> <FALSE> }
0 MAX-INT > —> <FALSE> }

® MIN-INT > — <TRUE> }
MAX—-INT MIN-INT > —-> <TRUE> }
MAX-INT @ > —> <TRUE> }

Implementing Forth in Python

We need to implement cyclic 2°’s complement numbers

class Int64:
MAXINT=2*%*%64-1
MSB = (MAXINT+1)//2

def (. value):

if (value, Int64): ;
.value=value.value -1 . -1 ok @

else: - .
value = value & MAXTNT 1 u. 18446744073709551615 ok @
-1 1 + u. 0 ok @

(- other): . -
if (other, Int64): 12+u. 1 ok @

return (.value + other.value)
return (.value + other)

But is it Forth?

Let’s run the Forth-94 core test - again.

But is it Forth?

inc lude

TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:
TESTING:

core.fs TESTING: CORE WORDS

BASIC ASSUMPTIONS

BOOLEANS: INVERT AND OR XOR

2% 2/ LSHIFT RSHIFT

COMPARISONS: 0= = 0< < > U< MIN MAX

STACK OPS: 2DROP 2DUP 20VER 2SWAP ?DUP DEPTH DROP DUP OVER ROT SWAP
>R R> R@

ADD/SUBTRACT: + — 1+ 1- ABS NEGATE

MULTIPLY: S>D *x Mx UMx

DIVIDE: FM/MOD SM/REM UM/MOD x/ x/MOD / /MOD MOD

HERE , @ ! CELL+ CELLS C, C@ C! CHARS 2@ 2! ALIGN ALIGNED +! ALLOT
CHAR [CHAR] [] BL S"

' ['] FIND EXECUTE IMMEDIATE COUNT LITERAL POSTPONE STATE

IF ELSE THEN BEGIN WHILE REPEAT UNTIL RECURSE

DO LOOP +LOOP I J UNLOOP LEAVE EXIT

DEFINING WORDS: : ; CONSTANT VARIABLE CREATE DOES> >BODY

EVALUATE

SOURCE >IN WORD

<# # #S #> HOLD SIGN BASE >NUMBER HEX DECIMAL

FILL MOVE

OUTPUT: . CR EMIT SPACE SPACES TYPE U.

But is it Forth?

include core.fs TESTING: CORE WORDS

TESTING: OUTPUT: . ." CR EMIT SPACE SPACES TYPE U.

YOU SHOULD SEE THE STANDARD GRAPHIC CHARACTERS:
IM#S%&" ()%+,—-./0123456789: ;<=>7(@

ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A_\

abcdefghijklmnopgrstuvwxyz{ |}~

YOU SHOULD SEE ©0-9 SEPARATED BY A SPACE:

012345678029

YOU SHOULD SEE 0-9 (WITH NO SPACES):

0123456789

YOU SHOULD SEE A-G SEPARATED BY A SPACE:

ABCDETFG®G

YOU SHOULD SEE 0-5 SEPARATED BY TWO SPACES:

o 1 2 3 4 5

YOU SHOULD SEE TwWO SEPARATE LINES:

LINE 1

LINE 2

YOU SHOULD SEE THE NUMBER RANGES OF SIGNED AND UNSIGNED NUMBERS:
SIGNED: —-8000000000000000 /FFFFFFFFFFFFFFF

UNSIGNED: © FFFFFFFFFFFFFFFF

But is it Forth? It passes the Forth-94 Core Test Yes|

include core.fs TESTING: CORE WORDS

YOU SHOULD SEE THE NUMBER RANGES OF SIGNED AND UNSIGNED NUMBERS:
SIGNED: -8000000000000000 /FFFFFFFFFFFFFFF

UNSIGNED: @ FFFFFFFFFFFFFFFF

TESTING: INPUT: ACCEPT

PLEASE TYPE UP TO 80 CHARACTERS:
1t works

RECEIVED: "1t works"
TESTING: DICTIONARY SEARCH RULES

GDX exists ok @

Blending Forth

 But the stack can hold not just (our) numbers.

* |t's iImplemented as a Python list that can hold any Python
object

e float numbers

e strings

e |Ists and dictionaries

e method and functions
pluggable number system

Blending Forth

Python Objects on the Data Stack

need now ok &

now . datetime.datetime (2025, 9,

13,

6,

56,

15,

133285)

ok

-

Related Work

* oforth by Franck Bensusan
* Objects on the stack
* no standard forth syntax (control structures)

* similar enough to be called Forth

But is it Forth?

'If It walks like a duck and
it quacks like a duck,

then it must be a duck”

Does it?

Demo

Blending Forth

 Why not use Python in first place?

e Forth Is concatenative and allows to execute
programs interactively step by step.

Blending Forth

Conclusion
 Implementing Forth in other languages Forth inherits their properties
* abstraction and representation the heart of implementation

* blending Forth Discussion Where to go from here?

