EuroForth 2025
Short paper

Improvements to enumeration

N.J. Nelson B.Sc. C. Eng. M.L.LE.T.
Micross Automation Systems

Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire

HR9 7BW UK

Tel. +44 1989 768080

Email njn@micross.co.uk

1. Introduction
At Euroforth 2023 I proposed for standardisation a new enumeration wordset:

ENUM<< <enumname>
[<Forth expression>] <membername> [\ <comment>]

>>

For example, one could do:

ENUM<< TESTENUM \ Name of the enumeration
AZERO \ By default, the enumeration starts at zero
AONE \ Standard Forth comments are allowed
12 + ATHREE \ Any Forth expression can be used to set the enumeration
AFOUR \ The enumeration increments
>> \ Enumeration terminator

TESTENUM SHOWCHAIN
AFOUR

ATHREE

AONE

AZERO ok

This was well received by my colleagues. But it wasn't long before requests for extra
features came along.

2. Add translated descriptions to the enumeration

A translated description of an enumerated value is a frequent requirement, and this
was normally done in a separate word e.g. for the above example, it might have been:

: TESTENUMDESCR (enval---z$) \ Returns translated phrase describing enval
CASE

AZERO OF P" Zero" ENDOF
AONE OF P" One" ENDOF
ATHREE OF P" Three" ENDOF
AFOUR OF P" Four" ENDOF
ANULL

ENDCASE

.
4

Clearly it would have been a lot easier to define the description phrase from within
the enumeration, rather than in a separate word. So now we have:

ENUM<< <enumname>
[<Description>] [<Forth expression>] <membername> [\ <comment>]

>>

But now there are two optional items before the member name. How can we possibly
tell them apart, give that Forth has no data types? In particular, <Description> cannot
consist of a phrase number, because

a) The phrase number could theoretically be quite a small number, well within the
likely range of enumeration numbers.

b) During the build process, some enumerations are needed before we build the
database access wordset, so that translatable phrases are not available at the point of
definition of the enumeration.

This was a challenge, until we realised that when a zero terminated string is defined
using Z" , you always get an address that is nowhere near HERE, which is where it

always used to be. Strings are in fact always presented on a recently invented space
called SYSPAD.

Since SYSPADSTART is typically a very large number e.g.

SYSPADSTART . 140734512400720 ok

this now gives us a way of distinguishing the two data types int and string, in all
cases of int that are likely to be enumerated.

We could now get as far as:

ENUM<< TESTENUM \ Name of the enumeration
AZERO \ By default, the enumeration starts at zero
AONE \ Standard Forth comments are allowed
12 + ATHREE \ Any Forth expression which has a stack effect...
\ ...(---n) can be used to set the enumeration
AFOUR \ The enumeration increments
Z" Customer" 11 AN11 \ Description and enumval
Z" Category" A12 \ Just a description
Al13 \ Neither
>> \ Enumeration terminator

Our enumeration recogniser now looks like this:

ENUMINTERPACTION (?7?,caddr,u---) \ Interpreter action for enum recogniser

ANULL -> ENUMZ$ \ Assume no description
DEPTH 2 - 0@ ?DO \ Deal with any preceding values
ROT DUP SYSPADSTART DUP /SYSPAD + WITHIN IF \ It is an address within the
\ strings buffer area
-> ENUMZ$ \ Use it as a description
ELSE \ Probably not a string
-> ENUMVAL \ Use it as a new enum value
THEN
LOOP
($CREATE) Create the enumerated name
ENUMVAL , Set the constant value
0 Reserve space for phrase number

ENUMZ$ ZCOUNT Z$,

INC ENUMVAL

LATEST-XT ENUMLIST ATEXECCHAIN
['] ENUMVALCOMP, SET-COMPILER

Compile description string
Next enumeration number

Add to list

When an enumerated constant 1is
being compiled

When an enumerated constant is
being interpreted

INTERP> ENUMVALINTERP

PP A A A AP A A A A d

We can still only save the original description though, not the translatable phrase
number, which is not yet available. We've just left a space for it.

You will see that we create a list of all members of each enumeration, and there is a
similar list of all the enumerations too.

It was not clear at the time precisely how these lists could be used - but now they
proved to be really useful.

Right at the end of the build process, by which time all enumerations have been
defined, and the database is up and running, we can execute a word that loops
through all the enumerations and their members. It extracts the original description
and matches it to a phrase number, creating new translatable phrases as necessary. It
then pops the phrase number into the previously reserved space.

We have previously defined two new modifiers (I do wish they were not called
operators in VFX), which enable us to easily access the original text and the phrase
number of any enumerated member.
OPERATOR: ENUMPHRASE \ Returns the phrase number of an enumerator

OP# ENUMPHRASE CONSTANT OPENUMPHRASE

OPERATOR: ENUMDESCR \ Returns the address of the description
OP# ENUMDESCR CONSTANT OPENUMDESCR

3. Making enumerated values available in external database queries

The second request from my colleagues was that enumerated values should be
available automatically in the database. Generally, our main application, in Forth, is
supported by several "dashboard" apps. The Forth program controls the system and
places reportable information into the database. The dashboards, which require no
programming, just configuration, display live data. Part of the configuration is the
provision of an SQL statement that the dashboard can use to extract the data it needs.
Previously, the SQL statements were littered with "magic numbers" representing our
enumerated values. Every time a change was made to an ENUM<< in the Forth code,
the dashboard configurations had to be checked in case any magic numbers had
changed.

The solution was to create, automatically, a "loadable function" in the database, for
each enumeration member. Then, a function can be used instead of a magic number
inside an SQL query, and the results always match. For example

REPEV_CHCUS . 92 ok
SQL| SELECT REPEV_CHCUS() |SQL>>

We can now take a look at a simplified version of the word which does all this, right

at the end of the build.

SETENUMPHRASES \ Place phrases for enumerations and create DB function
{ | penumname[255] pelementname[255] pelementnum plementdescr[255]

pphrase -- }
ENUMSLIST @ BEGIN
DUP WHILE
DUP CELL+ @
DUP IP>NFA 1+ penumname[ZMOVE
EXECUTE @ BEGIN
DUP WHILE
DUP CELL+ @
DUP IP>NFA 1+ pelementname[ZMOVE
>BODY
DUP @ -> pelementnum
DUP 2 CELLS+ plementdescr[ZMOVE
SQL| DROP FUNCTION IF EXISTS
| pelementname[>SQL |
| SQL
plementdescr[C@ IF
SQL| CREATE FUNCTION
| pelementname[>SQL | ()
RETURNS INT
DETERMINISTIC
RETURN | pelementnum FQL-N+ |
| SQL
plementdescr[FINDPHRASE -> pphrase
pphrase SWAP CELL+ !
ELSE
DROP
THEN
@
REPEAT DROP

@
REPEAT DROP

4. Conclusion

~ - PO A A A A A A A A a4

v e

Ay

Anchor of enumerations
Another enumeration
Get xt of enumeration
Get name

Get anchor of elements
Another element

Get xt of element

Get name of element

To element data

Get element number

Get description
Discard old function

Description is defined
Create new function

If replication used

Get phrase number

Set in element data

No element description
Address of data

Get next element
Discard element chain
Get next enumeration
Discard chain

A lot of this would have been easier if data types were more easily available - see my

next paper "Forth 2025".

