
EuroForth 2025

Short paper

Improvements to enumeration

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
Micross Automation Systems
Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire
HR9 7BW UK
Tel. +44 1989 768080
Email njn@micross.co.uk

1. Introduction

At Euroforth 2023 I proposed for standardisation a new enumeration wordset:

ENUM<< <enumname>
 [<Forth expression>] <membername> [\ <comment>]
 ...
>>

For example, one could do:

This was well received by my colleagues. But it wasn't long before requests for extra
features came along.

ENUM<< TESTENUM \ Name of the enumeration
 AZERO \ By default, the enumeration starts at zero
 AONE \ Standard Forth comments are allowed
 1 2 + ATHREE \ Any Forth expression can be used to set the enumeration
 AFOUR \ The enumeration increments
>> \ Enumeration terminator

TESTENUM SHOWCHAIN
AFOUR
ATHREE
AONE
AZERO ok

2. Add translated descriptions to the enumeration

A translated description of an enumerated value is a frequent requirement, and this
was normally done in a separate word e.g. for the above example, it might have been:

Clearly it would have been a lot easier to define the description phrase from within
the enumeration, rather than in a separate word. So now we have:

ENUM<< <enumname>
 [<Description>] [<Forth expression>] <membername> [\ <comment>]
 ...
>>

But now there are two optional items before the member name. How can we possibly
tell them apart, give that Forth has no data types? In particular, <Description> cannot
consist of a phrase number, because
a) The phrase number could theoretically be quite a small number, well within the
likely range of enumeration numbers.
b) During the build process, some enumerations are needed before we build the
database access wordset, so that translatable phrases are not available at the point of
definition of the enumeration.

This was a challenge, until we realised that when a zero terminated string is defined
using Z" , you always get an address that is nowhere near HERE, which is where it
always used to be. Strings are in fact always presented on a recently invented space
called SYSPAD.

Since SYSPADSTART is typically a very large number e.g.

this now gives us a way of distinguishing the two data types int and string, in all
cases of int that are likely to be enumerated.

: TESTENUMDESCR (enval---z$) \ Returns translated phrase describing enval
 CASE
 AZERO OF P" Zero" ENDOF
 AONE OF P" One" ENDOF
 ATHREE OF P" Three" ENDOF
 AFOUR OF P" Four" ENDOF
 ^NULL
 ENDCASE
;

SYSPADSTART . 140734512400720 ok

We could now get as far as:

Our enumeration recogniser now looks like this:

We can still only save the original description though, not the translatable phrase
number, which is not yet available. We've just left a space for it.

You will see that we create a list of all members of each enumeration, and there is a
similar list of all the enumerations too.

It was not clear at the time precisely how these lists could be used - but now they
proved to be really useful.

Right at the end of the build process, by which time all enumerations have been
defined, and the database is up and running, we can execute a word that loops
through all the enumerations and their members. It extracts the original description
and matches it to a phrase number, creating new translatable phrases as necessary. It
then pops the phrase number into the previously reserved space.

ENUM<< TESTENUM \ Name of the enumeration
 AZERO \ By default, the enumeration starts at zero
 AONE \ Standard Forth comments are allowed
 1 2 + ATHREE \ Any Forth expression which has a stack effect...

\ ...(---n) can be used to set the enumeration
 AFOUR \ The enumeration increments
 Z" Customer" 11 AN11 \ Description and enumval
 Z" Category" A12 \ Just a description
 A13 \ Neither
>> \ Enumeration terminator

: ENUMINTERPACTION (??,caddr,u---) \ Interpreter action for enum recogniser
 ^NULL -> ENUMZ$ \ Assume no description
 DEPTH 2 - 0 ?DO \ Deal with any preceding values
 ROT DUP SYSPADSTART DUP /SYSPAD + WITHIN IF \ It is an address within the

\ strings buffer area
 -> ENUMZ$ \ Use it as a description
 ELSE \ Probably not a string
 -> ENUMVAL \ Use it as a new enum value
 THEN
 LOOP
 ($CREATE) \ Create the enumerated name
 ENUMVAL , \ Set the constant value
 0 , \ Reserve space for phrase number
 ENUMZ$ ZCOUNT Z$, \ Compile description string
 INC ENUMVAL \ Next enumeration number
 LATEST-XT ENUMLIST ATEXECCHAIN \ Add to list
 ['] ENUMVALCOMP, SET-COMPILER \ When an enumerated constant is

\ being compiled
 INTERP> ENUMVALINTERP \ When an enumerated constant is

\ being interpreted
;

We have previously defined two new modifiers (I do wish they were not called
operators in VFX), which enable us to easily access the original text and the phrase
number of any enumerated member.

3. Making enumerated values available in external database queries

The second request from my colleagues was that enumerated values should be
available automatically in the database. Generally, our main application, in Forth, is
supported by several "dashboard" apps. The Forth program controls the system and
places reportable information into the database. The dashboards, which require no
programming, just configuration, display live data. Part of the configuration is the
provision of an SQL statement that the dashboard can use to extract the data it needs.
Previously, the SQL statements were littered with "magic numbers" representing our
enumerated values. Every time a change was made to an ENUM<< in the Forth code,
the dashboard configurations had to be checked in case any magic numbers had
changed.

The solution was to create, automatically, a "loadable function" in the database, for
each enumeration member. Then, a function can be used instead of a magic number
inside an SQL query, and the results always match. For example

OPERATOR: ENUMPHRASE \ Returns the phrase number of an enumerator
 OP# ENUMPHRASE CONSTANT OPENUMPHRASE
OPERATOR: ENUMDESCR \ Returns the address of the description
 OP# ENUMDESCR CONSTANT OPENUMDESCR

REPEV_CHCUS . 92 ok
SQL| SELECT REPEV_CHCUS() |SQL>>
+---------------+
| REPEV_CHCUS() |
+---------------+
| 92 |
+---------------+ ok

We can now take a look at a simplified version of the word which does all this, right
at the end of the build.

4. Conclusion

A lot of this would have been easier if data types were more easily available - see my
next paper "Forth 2025".

: SETENUMPHRASES \ Place phrases for enumerations and create DB function
 { | penumname[255] pelementname[255] pelementnum plementdescr[255]
 pphrase -- }
 ENUMSLIST @ BEGIN \ Anchor of enumerations
 DUP WHILE \ Another enumeration
 DUP CELL+ @ \ Get xt of enumeration
 DUP IP>NFA 1+ penumname[ZMOVE \ Get name
 EXECUTE @ BEGIN \ Get anchor of elements
 DUP WHILE \ Another element
 DUP CELL+ @ \ Get xt of element
 DUP IP>NFA 1+ pelementname[ZMOVE \ Get name of element
 >BODY \ To element data
 DUP @ -> pelementnum \ Get element number
 DUP 2 CELLS+ plementdescr[ZMOVE \ Get description
 SQL| DROP FUNCTION IF EXISTS \ Discard old function
 | pelementname[>SQL |
 |SQL
 plementdescr[C@ IF \ Description is defined
 SQL| CREATE FUNCTION \ Create new function
 | pelementname[>SQL | ()
 RETURNS INT
 DETERMINISTIC \ If replication used
 RETURN | pelementnum FQL-N+ |
 |SQL
 plementdescr[FINDPHRASE -> pphrase \ Get phrase number
 pphrase SWAP CELL+ ! \ Set in element data
 ELSE \ No element description
 DROP \ Address of data
 THEN
 @ \ Get next element
 REPEAT DROP \ Discard element chain
 @ \ Get next enumeration
 REPEAT DROP \ Discard chain
;

