EuroForth 2025

Forth 2025

Abstract

Forth is stuck in a rut. Much energy seems to be spent in making tiny refinements to a
language specification that is 25 years old. In this paper, I shall propose some bold
and radical changes, with the intention of returning Forth to its proper place as a
useful and modern language.

N.J. Nelson B.Sc. C. Eng. M.LLE.T.
Micross Automation Systems

Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire

HR9 7BW UK

Tel. +44 1989 768080

Email njn@micross.co.uk

1. Introduction

It often feels like Forth is moribund! In the last few years, at this conference, I seem
to be in a minority of delegates from commercial companies that use Forth in their
main products. Yet, Forth still has huge advantages, and in the last few years at
EuroForth, I have tried to highlight extraordinarily useful techniques that are possible
in Forth and are not possible in any other language that I know of.

One has to ask, why do more people not use Forth, given these advantages? Here are
some possible answers:

a) These advantages are not stressed, in online descriptions of Forth. Instead, one sees
long descriptions of how antiquated the language is, and how quirky, and by
inference how it is only chosen nowadays (rarely) for "niche" applications.

b) If someone, who is assessing which new language to choose, accidentally comes
across the Forth standards website, they will ask (after a near death experience due to
terminal boredom) "yes, but what is it for, what can it actually do, that others
cannot?" - and no answer is given.

c) Forth really does have some antiquated absurdities, the reasons for which are lost
in the mists of time.

d) Forth does not initially appear to have many features that are essential for modern
programming.

2. What are the true advantages of Forth?

a) You can do things during compilation. This includes quite complicated things like
querying databases. This feature opens up a whole realm of extraordinary
possibilities, some of which I have attempted to demonstrate at many previous
conferences.

b) In fact, you can do anything in Forth. Although there may be guidelines, you are
not prevented from doing anything you like. (Of course, this also enables an
incautious programmer to get into deep trouble.)

c) Forth can be completely freely formatted. This enables and encourages you to
write concise, highly readable and easily maintainable code. (Of course, it also

enables you to write complete gibberish, if you really want to.)

d) Forth is interactive, and you can easily arrange for this to continue even while your
application is running.

e) The edit-compile-execute-test-debug cycle is extraordinarily quick and efficient in
Forth. This is mainly because everything except the edit is done within Forth itself.

The old adage "Forth is its own compiler" is still just as true today.

f) If there's some Forth word you don't like, you can always redefine it.
See section 5 below!

3. What previous advantages of Forth no longer apply?

In the past, Forth was often described as being fast, compact, and so simple that
anyone could write their own compiler in a day.

It is true that Forth is still fast and compact. However, to achieve speed when
targetting a modern and highly complex CPU, you need an optimising compiler,

which is not built in a day.

As regards compactness, who cares any more? If your program won't fit, spend 5
Euros on some more memory.

4. What do we need to do?
® Get rid of the bad bits.
® Enhance the good bits.

® Add the missing bits.

5. The bad bits - WITHIN

I have never known a word, in any language, that has caused so much trouble to so
many programmers.
3 1 3 WITHIN BOOL. False ok

The worst thing about it is that because this affects a boundary condition, a mistake
may not be seen until an application has been running for weeks.

We got to this state because of incorrect mathematics, which assumed that the input
parameters were real numbers. But they are not - they may only be integers. The
correct mathematics is to ask whether the integer 3 is within the set {1,2,3}.

I guess it's not possible to completely get rid of WITHIN, but one could at least move
it to the "Optional Badwords" wordset! Then we could introduce a new core word -
perhaps MEMBER - which is inclusive.

At the very top of every build file, we have to redefine WITHIN. It occurs 1094 times
in our main application.

6. The bad bits - CASE

It's the default clause of a CASE construction that causes so many programming
errors. Again, the mistake might not be seen for a long time. The perfectly simple
solution is to keep the index on the return stack instead of the number stack.

At the very top of every build file, we have to redefine CASE and all its other words.
A CASE construction occurs 830 times in our main application.

7. The DO...LOOP conundrum

Observations

a) There are 1612 DO...LOOP constructions in our main application.

b) We currently have a rule that if either of the two input parameters is not a
constant, then we always use ?DO instead of DO. We have 1018 ?DOs and 594
DO:s.

) Earlier on in our development process, we defaulted to 0-based indexing
(computer friendly). About two years ago, we changed to 1-based indexing
(human friendly). We did not modify old 0-based code.

d) We have 1281 instances of either 0 DO or 0 ?DO.

We have 329 instances of either 1 DO or 1 ?DO.
In only two cases out of 1612 do we use anything other than 0 or 1 as the
second parameter.

e) A disadvantage of using 1-based indexing is that the first parameter for DO
frequently requires 1+. Forgetting to do the 1+ is a common cause of
programming errors.

f) There are only 3 instances of +LOOP.

Conclusions

a) Move DO, ?DO, LOOP and +LOOP to an optional wordset.

b) Introduce a new and much simpler looping construct, perhaps
FOR (n---) ... NEXT which loops n times, but skips completely
ifn<1.

) Retain the same return stack structure as a DO...LOOP, so that

I, J and LEAVE work as before.

This would satisfy 99.8% of our loop requirements, with the benefit of greater
security and simplicity.

8. Values not variables

As far back as Euroforth 2000, I started advocating for the deprecation of
VARIABLE, @ and !, and the promotion of VALUE. The reasoning for that may be
found in my previous paper.

Modifiers (they should not be called operators) should be standardised, enumerated
and extendable. Attempting to apply a modifier to an unmodifiable word should give
a compilation error.

At present, our main application has 105 remaining VARIABLE:S - these are mostly
because we have not yet redefined the VFX chain functions, which currently require a
VARIABLE root. By contrast, there are 1334 VALUEs.

The issue of thread local VARIABLESs or VALUESs will be discussed in section 13.
9. Add VINDEX, VMATIX, STRINDEX

What modern language could be without proper standardised support for arrays and
matrices?

My Euroforth 2000 paper also proposed:

a) VINDEX for an array of CELLs

b) VMATRIX for a two dimensional matrix of CELLs
c) STRINDEX for an array of strings.

d) VFIELD and derivatives, for structures

It turned out that some very large VINDEXs and VMATRIXs were wasting a lot of
space by using 64 bit cells when for example only byte values were required. We
have therefore extended the concept to provide byte, word and int (32 bit) flavours.

By now, we can't imagine how we managed without them.

There are 210 VINDEXSs, 28 VMATRIXSs and 26 STRINDEXSs in our main
application. This excludes the byte, word and int flavours (there are for example 15
VBINDEXSs), and the dynamically generated VALUEs, VINDEXs and STRINDEXs
resulting from the replacement for the Windows registry settings, also described in a
different 2020 paper.

I should add that I am not particularly happy with the naming of some of these words,
and would be quite happy to change the names, provided the new name was shorter.

10. Add ENUM<<

How is it possible for a language to survive without a standardised enumeration
function? I described a fully Forth faithful enumeration at Euroforth 2023, and some
enhancements were described earlier at this conference. Surely, this should at least
form a part of an optional word set?

11. Zstrings

It must be at least 30 years ago that I first started advocating a general move from
counted strings to zero terminated strings. The original reason was that any serious
application is likely to need to interact with the native operating system, and also
external libraries with "C" interfaces, and, of course, Windows, Linux and C libraries
all use zstrings. Back in the days of Windows 95, it was not certain which side the
coin would fall, and the 32 bit Windows version of our main applications extensively
used "bi-strings", that is zero terminated counted strings. By the time we moved to
Linux, initially 32 bit then soon after 64 bit, it became clear that we were in a zero
terminated world, and support for both cstrings and bi-strings was dropped.

As I wrote this, I searched for "zero terminated"” in the Forth standard and got "NO
RESULTS" - which gives the clear impression that Forth is not a suitable language to
use with Windows, Linux or C libraries!

The four essential words needed are:

a) A word to define a z-string - currently:
: Z" (Comp: "ccc<quote>"--- ; Run: ---zaddr)
However, I note that the simple word " is still unused in standard Forth, so why
don't we use that?

b) A word to type the z-string (used only for debugging) - currently:
: 7$. (zaddr---)
But see section 18 below.

C) A word for concatenating zstrings - currently:
: Z+ (zaddr1,zaddr2---zaddr3)
Note that this word MUST be thread safe, and must not involve any garbage
collection. Also see section 18 below.

d) A word to format a number as a zstring - currently:
: ZFORMAT (n---zaddr)

There are 3446 instances of Z", 1482 instances of Z+ and 432 instances of
ZFORMAT in our main application.

Also frequently used, are:

: ZDIGITS (n1---n2)\ If n1 is zero, return zero. Otherwise assume n1 is the address
of a zero terminated string, and convert the string to a number.

: 7= (2$1,282--- £) \ True if two zstrings are the same

: 2<> (2$1,2$1---f) \ True if two zstrings are not equal

: ZCAT (z$1,2$2---z$1) \ Concatenates z$2 to the end of z$1

(The user responsible for the buffer z$1 in the above)

: ZINITIATOR (zaddr---zaddr') \ Find start of a zero initiated string

: ZTRAILING (z$---) \ A zstring is adjusted to exclude trailing spaces

: ZLIMIT (saddr,maxlen---) \ Adds a zterm to a string of specified maximum length
: ZMOVE (src,dst---) \ According to the documentation, all this does is show off the
VEX optimiser!!

In addition, a subset of the file access words are, as needed, converted to use zero
terminated names.

12. UTF8

Forth needs to realise that the world has moved on from ASCII. The use of UTF8 is
almost universal. Fortunately, UTF8 strings are single zero terminated, so all the
zstring words above still work.

I am not quite sure what the XCHAR wordset in the Forth standard is for. All our

applications are dynamically multilingual - yet we have never needed any of the
XCHAR words.

One thing definitely needs fixing - C@. What this ought to do is fetch the UTF8
character at the address. If byte acting words are really needed, they should be B@
and B!.

13. Threads
These days, only the most trivial applications run in a single thread - yet Forth has no
standard wordset for handling threads. Anyone approaching Forth for the first time

would be under the impression that Forth does not do threads!

VFX does of course have quite good thread support, but there are three important
improvements that are needed.

a) "User" variables (effectively thread-local variables) need to be converted to thread-
local values.

b) A method of initialising the thread-local values is needed.
) A better method of dealing with thread-local memory is needed.

There are 40 threads in our main application, though typically only half a dozen are
running at the "same time".

14. Execution chains

This has been a feature of MPE Forths for many years, but it is only recently that we
have discovered how extremely useful it is. This is another example of a concept that
is easy in Forth, but quite hard if not impossible in most other languages.

15. Libraries and externs

Yet again, we have a situation that the Forth standard does not mention something
that is a necessity for any serious application!

16. Databases
And again, how many real life applications need to access databases? The Forth

Query Language (FQL) has been around for years and is rock solid. Dare I have the
impertinence to suggest it should go into the standard?

17. Locals

A frequent criticism of Forth is that stack manipulation makes it hard to read. Stack
manipulation should be de-emphasised in favour of locals.

The Forth standard needs to be completely rewritten to use:

{ <ins> | <locals> -- <outs> }

where standard ins and locals behave like VALUE (with all modifiers permitted), and
other data types (e.g. float, string) are available. Locals should be automatically
initialised.

17. Doubles

Think of one of the most popular and inexpensive tiny computers - the Raspberry Pi.
It has a 64 bit CPU. Do we really need double length integers any more?

Let us try and think of some very large numbers, for example the US national debt.
At the instant of writing, this stood at $37,289,586,478,935. The largest unsigned
number representable in 64 bits is 18,446,744,073,709,551,615. We could express the
US national debt in cents and still have plenty of headroom!

The reason for raising this issue is because when we demonstrate interactive Forth to
a newcomer, they quickly understand it.

22+.40k Nice!
But shortly afterwards, they will try:

1.23+.30k-1 WHAT???
That takes a lot of explaining, and it is completely unnecessary.

18. Numbers, and things

This brings me to possibly the most radical proposal, which is to address the issue of
why 1.2 3 + does not work, when it so easily could work.

The first and easiest fix is that when we are free from double numbers, the floating
point recogniser could accept 1.2.

The next thing to think about is data types. From the birth of Forth, there was an
assumption that everything was integer. There was no need to consider data types,
because there was only one.

We were told that floating point was slow, used a lot of expensive memory, and was
unnecessary.

This has not been true for decades. Floating point is just as quick as integer, uses the
same amount of memory, and is essential. So a floating point wordset was tagged
onto Forth, and you had to remember to put an F in front of everything.

Furthermore, type conversion is manual, and you have to remember where you are on
two different stacks.

There are 544 instances of S>F and 144 instances of F>S in our main application.
There are no instances of F>D or D>F. This leads us to consider that maybe in the
future floats should be the default, and that to specify an integer you need to put a
prefix, just like you do to specify a hex number.

A more interesting idea might be to merge the data stack with the floating point stack,
and instead add a type stack. The basic addition word, and many others, could then
become type smart. Now we are away!

1.23+.4.2 0k

"abc" " 123" + . abc123 ok

313 WITHIN . True ok \ YEA!!

" KR 2" 2 + . 21 ok \ That is "European conference", by the way.

Against that, there is sure to be the argument of speed. However:

a) Nowadays, most computing time is spent inside library calls, not in Forth itself.

b) If your program runs too slowly, spend 5 Euros on a faster PC - it's much cheaper
than buying a programmer's time.

c) Constant arithmetic of mixed type as in the examples above would in any case be
resolved by the optimiser at compile time, not at run time.

d) If you really, really needed to speed up some critical routine, the explicit arithmetic
and type conversion words would still be available.

19. Conclusion

I hope that these notes and observations will lead to some radical changes to the Forth
standard very quickly, so as to restore it to being a language of choice for discerning
programmers.

