VEX Forth for ARM 64 CPUs

Trials and Tribulations

Stephen Pelc, stephen@vfxforth.com, Wodni & Pelc GmbH, Sept 20225

In the beginning ...
When ARM first appeared

* First ARM32 chips in 1985, DEC’s StrongARM in 1996

* Phillips LPC2000 marked start of ARM embedded explosion in 2004
 Many, many variants since

 ARM has often “upgraded” and “improved” instruction sets

* Primary 32 bit ISAs (Instruction Set Architectures)
ARM32 - the original
Thumb?2 - 16/32 encoding of ARM32 ISA

* | eading up to ARM64

About ARMG64

Beginning again

« ARM32 and T2 ISAs supported for legacy reasons
« ARMOG4 has 32 regs with new instruction set - 32 bit opcodes
 Most of the ARM64 books are not useful

 Most useful documentation is the
“Compiler Writer’s Guide to the Power PC”

e Some instructions appear to be bizarre

e The cache is a PITA

ARM64 ISA - 1

Immediate data
* Arithmetic - 16 bit, 12 + shift, 12, 8, 7, 6
large literals require several instructions

* Logical - N:immr6:immso6 is 13 bit mask
about 5000 options used by AND ORR and EOR

e Branches - 26 bit, 19 bit, 14 bit
« Memory offset - s19, ul12, s9, s7, 0

e Calls have +/-128 Mb range, conditionals +/-1 Mb range
big improvement over many CPUs

ARM64 ISA - 2

Some PowerPC inheritances

e Conditional instructions
cmp tos, x17 \ (n1-n2)-(n3-n2)
csinv tos, xzr, xzr, .ls \ cy -> -1, ncy -> 0

Conditional select invert
Destination reg = first or second source register processed by condition
Builds 0= 0< and friends with no branches

CSEL CSET CSETM CSINC CSINV CSNEG

Caches
The pain begins

* Nothing like ARM32
o Separate level 1 Instruction and data caches

 Minimum cache line size Iis 64 byte
size can be read at execution level O (user)

* Will require changes to the VFX64 kernel in the long term

Tools - 1

What we need

 Cross compiler - x64 -> ARM64
Can use Rosetta under macOS and Linux
Rosetta has bugs which can destroy integrity of the target image
First bytes of new 4k page can be corrupt

 Back to plan B
cross compile on x64 box
deliver to ARM64 box
debug on ARM64 Linux

macOS later

Tools - 2

Both on x64 and ARMG64 - in cross compiler and in target

 Assembler - prefix notation mostly follows ARM notation
 Disassembler - needed to debug code generator

 Code generator and optimiser
1 and a bit passes with heuristics and backtracking
data stack is modelled at compile time

 Required code - best done in assembler

* Operating system interface
Externals and callbacks

Example 1

Store with Cache Invalidation - source

code 1l!c (t) \ 1 addr --
\ *G Store and Flush instruction cache line containing *\i{addr}.

\ ** Use in stores of code.

ldr x0, [psp]!, # 8 \ get 1

str wO, [tos, # 0] \ save 1

ic ivau tos \ flush

dsb SY \ ensure completion of the invalidation
isb SY \ ensure instruction fetch path sees

\ new I cache state
1dr tos, [psp]!, # 8 \ restore TOS
ret x30

end—-code

Example 1

8 bytes, 7

instructions.

Disassembly

dis l!lc(t)

L!C(T)

(0041:1850 A08740F8) LDR X0, [XPSP]!, # $8
(0041:1854 400300B9) STR wWo, [XTOS, # $0 |

(0041:1858 3A750BD5) SYS $1BA9 XTOS

(0041:185C 9F3F@3D5) DSB # $0F

(0041:1860 DF3F@O3D5) 1SB # $0OF

(0041:1864 BA8740F8) LDR XTO0S, [XPSP]!, # 48
(0041:1868 COO35FD6) RET XLR (NEXT/EXIT)

2

10

Example 2

High level Forth - source

. InOv1l? \ addrl —— addr2|0
\ *G Returns the overlay address (addr2) if the address (addrl)
\ *k 1s within an overlay, otherwise returns 0.
ovl-link @
begin \ —— addr *xovl
dup
while \ — addr *xovl
2dup OVI.end 2@ within if \ — addr xovl
nip exit
then
ovi.link @
repeat
nip \ remove addr

11

Example 2
High level Forth - disassembly

dis inovl?
INOVL?

(0042:9F88 QOFF9AD2) MOVZ X0, # $D7F8

(0042:9F8C 2008A0F2) MOVK X0, # %41 LSL # %10

(0042:9F90 110040F8) LDUR X17, [X0, # $0]

(0042:9F94 BABF1FF8) STR XT0S, [XPSP, # $-8 1!
(0042:9F98 FAQ311AA) MOV XT0S, X17

(0042:9F9C 9E8F1FF8) STR XLR, [XRSP, # $-8]!
(0042:9FAQ® 5F@O31FEB) CMP XT0S, XZR LSL# %00

(0042:9FA4 40020054) B .EQ # $429FEC

(0042:9FA8 50BF41A9) LDP X16, X15, [XTO0S, # $18 |
(0042:9FAC BD6300D1) SUB XPSP, XPSP, # $18

(0042:9FBO AFQ300F9) STR X15, [XPSP, # $0]

(0042:9FB4 A1QF40F9) LDR X1, [XPSP, # $18]

(0042:9FB8 A10700F9) STR X1, [XPSP, # $8]

(0042:9FBC BAQOBOOF9) STR XT0S, [XPSP, # $10]
(0042:9FCO FAQ310AA) MOV XT0S, X16

(0042:9FC4 53A3FF97) BL # $412D10 WITHIN

(0042:9FC8 5FQ31FEB) CMP XT0S, XZR LSL# $00

(0042:9FCC BA8740F8) LDR XT0S, [XPSP]!, # $8
(0042:9FD0 80000054) B .EQ # $429FE0

(0042:9FD4 BD230091) ADD XPSP, XPSP, # $08

(0042:9FD8 9E8740F8) LDR XLR, [XRSP]!, # $8
(0042:9FDC C@O35FD6) RET XLR (NEXT/EXIT)

(0042:9FEQ 510340F8) LDUR X17, [XT0S, # $0]

(0042:9FE4 FA0Q311AA) MOV XT0S, X17

(0042:9FE8 CEFDFF54) B # $429FA0

(0042:9FEC BD230091) ADD XPSP, XPSP, # $08

(0042:9FF0 9E8740F8) LDR XLR, [XRSP]!, # $8
(0042:9FF4 CQOO35FD6) RET XLR (NEXT/EXIT)

112 bytes, 28 instructions.
ok

Current status

Optimism at last

 VFX64 kernel runs (sort of) with x64 tools on macOS and Linux VM
 \We are migrating to separate x64 and ARM64 development tools
* Production release needs

 Compiler on ARM64

 Enhanced code generator

* Finish port of OS dependencies

* First target ARM64 Linux

13

Thanks

e Questions?

