
Stephen Pelc, stephen@vfxforth.com, Wodni & Pelc GmbH, Sept 20225

VFX Forth for ARM 64 CPUs
Trials and Tribulations

1

In the beginning …
When ARM first appeared

• First ARM32 chips in 1985, DEC’s StrongARM in 1996

• Phillips LPC2000 marked start of ARM embedded explosion in 2004

• Many, many variants since

• ARM has often “upgraded” and “improved” instruction sets

• Primary 32 bit ISAs (Instruction Set Architectures)  
ARM32 - the original 
Thumb2 - 16/32 encoding of ARM32 ISA

• Leading up to ARM64
2

About ARM64
Beginning again

• ARM32 and T2 ISAs supported for legacy reasons

• ARM64 has 32 regs with new instruction set - 32 bit opcodes

• Most of the ARM64 books are not useful

• Most useful documentation is the  
“Compiler Writer’s Guide to the Power PC”

• Some instructions appear to be bizarre

• The cache is a PITA

3

ARM64 ISA - 1
Immediate data

• Arithmetic - 16 bit, 12 + shift, 12, 8, 7, 6 
large literals require several instructions

• Logical - N:immr6:imms6 is 13 bit mask 
about 5000 options used by AND ORR and EOR

• Branches - 26 bit, 19 bit, 14 bit

• Memory offset - s19, u12, s9, s7, 0

• Calls have +/-128 Mb range, conditionals +/-1 Mb range 
big improvement over many CPUs

4

ARM64 ISA - 2
Some PowerPC inheritances

• Conditional instructions 
 cmp		 tos, x17	 \ (n1-n2)-(n3-n2)
 csinv	tos, xzr, xzr, .ls	\ cy -> -1, ncy -> 0

Conditional select invert

Destination reg = first or second source register processed by condition

Builds 0= 0< and friends with no branches

CSEL CSET CSETM CSINC CSINV CSNEG

5

Caches
The pain begins

• Nothing like ARM32

• Separate level 1 Instruction and data caches

• Minimum cache line size is 64 byte 
size can be read at execution level 0 (user)

• Will require changes to the VFX64 kernel in the long term

6

Tools - 1
What we need

• Cross compiler - x64 -> ARM64 
Can use Rosetta under macOS and Linux 
Rosetta has bugs which can destroy integrity of the target image 
First bytes of new 4k page can be corrupt

• Back to plan B 
cross compile on x64 box 
deliver to ARM64 box 
debug on ARM64 Linux 
macOS later

7

Tools - 2
Both on x64 and ARM64 - in cross compiler and in target

• Assembler - prefix notation mostly follows ARM notation

• Disassembler - needed to debug code generator

• Code generator and optimiser 
1 and a bit passes with heuristics and backtracking 
data stack is modelled at compile time

• Required code - best done in assembler

• Operating system interface 
Externals and callbacks

8

Example 1
Store with Cache Invalidation - source

code l!c(t)	 \ l addr --

\ *G Store and Flush instruction cache line containing *\i{addr}.

\ ** Use in stores of code.

 ldr	x0, [psp]!, # 8		 \ get l

 str	w0, [tos, # 0]	 	 \ save l

 ic	 ivau tos	 	 	 \ flush

 dsb SY		 	 	 \ ensure completion of the invalidation

 isb SY		 	 	 \ ensure instruction fetch path sees

		 	 	 	 	 \ new I cache state

 ldr tos, [psp]!, # 8	 \ restore TOS

 ret	x30

end-code

•

9

Example 1
Disassembly

dis l!c(t)
L!C(T)
(0041:1850 A08740F8) LDR X0, [XPSP]!, # $8
(0041:1854 400300B9) STR W0, [XTOS, # $0]
(0041:1858 3A750BD5) SYS $1BA9 XTOS
(0041:185C 9F3F03D5) DSB # $0F
(0041:1860 DF3F03D5) ISB # $0F
(0041:1864 BA8740F8) LDR XTOS, [XPSP]!, # $8
(0041:1868 C0035FD6) RET XLR (NEXT/EXIT)
28 bytes, 7 instructions.
•

10

Example 2
High level Forth - source

: InOvl? \ addr1 -- addr2|0
\ *G Returns the overlay address (addr2) if the address (addr1)
\ ** is within an overlay, otherwise returns 0.
 ovl-link @

 begin		 	 	 	 	 	 \ -- addr *ovl
 dup
 while		 	 	 	 	 	 \ -- addr *ovl
 2dup OVI.end 2@ within if		 \ -- addr *ovl
 nip exit
 then
 ovi.link @
 repeat
 nip		 	 	 	 	 	 \ remove addr
;

11

Example 2
High level Forth - disassembly

dis inovl?
INOVL?
(0042:9F88 00FF9AD2) MOVZ X0, # $D7F8
(0042:9F8C 2008A0F2) MOVK X0, # $41 LSL # $10
(0042:9F90 110040F8) LDUR X17, [X0, # $0]
(0042:9F94 BA8F1FF8) STR XTOS, [XPSP, # $-8]!
(0042:9F98 FA0311AA) MOV XTOS, X17
(0042:9F9C 9E8F1FF8) STR XLR, [XRSP, # $-8]!
(0042:9FA0 5F031FEB) CMP XTOS, XZR LSL# $00
(0042:9FA4 40020054) B .EQ # $429FEC
(0042:9FA8 50BF41A9) LDP X16, X15, [XTOS, # $18]
(0042:9FAC BD6300D1) SUB XPSP, XPSP, # $18
(0042:9FB0 AF0300F9) STR X15, [XPSP, # $0]
(0042:9FB4 A10F40F9) LDR X1, [XPSP, # $18]
(0042:9FB8 A10700F9) STR X1, [XPSP, # $8]
(0042:9FBC BA0B00F9) STR XTOS, [XPSP, # $10]
(0042:9FC0 FA0310AA) MOV XTOS, X16
(0042:9FC4 53A3FF97) BL # $412D10 WITHIN
(0042:9FC8 5F031FEB) CMP XTOS, XZR LSL# $00
(0042:9FCC BA8740F8) LDR XTOS, [XPSP]!, # $8
(0042:9FD0 80000054) B .EQ # $429FE0
(0042:9FD4 BD230091) ADD XPSP, XPSP, # $08
(0042:9FD8 9E8740F8) LDR XLR, [XRSP]!, # $8
(0042:9FDC C0035FD6) RET XLR (NEXT/EXIT)
(0042:9FE0 510340F8) LDUR X17, [XTOS, # $0]
(0042:9FE4 FA0311AA) MOV XTOS, X17
(0042:9FE8 CEFDFF54) B # $429FA0
(0042:9FEC BD230091) ADD XPSP, XPSP, # $08
(0042:9FF0 9E8740F8) LDR XLR, [XRSP]!, # $8
(0042:9FF4 C0035FD6) RET XLR (NEXT/EXIT)
112 bytes, 28 instructions.
 ok

12

Current status
Optimism at last

• VFX64 kernel runs (sort of) with x64 tools on macOS and Linux VM

• We are migrating to separate x64 and ARM64 development tools

• Production release needs

• Compiler on ARM64

• Enhanced code generator

• Finish port of OS dependencies

• First target ARM64 Linux

13

Thanks

• Questions?

14

