
Stephen Pelc, stephen@vfxforth.com

Wodni & Pelc GmbH

9 September 2025

Forth for ARM 64 CPUs
Trials and tribulations

ARM’s 64 bit CPUs are very different beasts from the 32 bit ones. The instruction mix
Is completely different and appears to be derived from the Power PC. Cache
behaviour Is quite different and poorly documented. VFX Forth (64 bit) has been
ported to the ARMv8-A architecture and an alpha release is expected later in 2025.
The current Arm® Architecture Reference Manual for the A profile is 14,568 pages
long. Despite my reservations, the more I use this CPU, the more I come to
appreciate it. The code density is far better than expected.

In the beginning …
Many years ago, the 32 bit ARM CPU appeared. Over the years various instruction sets

and derivatives appeared. As a company, ARM has always made frequent changes to the

instruction set to support the silicon. Unlike other companies, an ARM instruction set

supports today’s architecture. 64 bit ARMs are based on the ARMv8 architecture from 2011,

and ARMv9 already exists. ARMv9 is basically has the ARMv8 instruction set with

extensions.

Under some customer pressure, we started a port of VFX Forth to the ARMv8A

architecture.

About the ARM64
The ARM 64 bit CPU in native mode has very little to do with ARM32, although the

original ARM32 and Thumb-2 ISAs are supported for legacy reasons and I shall discuss these

no further. There are several ARM64 assembler books out there; in the main they are useless

for people who have assembler experience and projects under their belt. You will find the

FORTH FOR ARM64 1

“Compiler Writer’s Guide to the Power PC” of use, and PowerPC assembler experience of

value.

The instruction set consists of 32 bit instructions only, with a number of conditional

operations derived from PowerPC. Many of the instructions have three operands. There are

32 registers, including a zero register and a subroutine return register. There are many

pseudo-instructions which offer a different syntax to the base instruction. Although initially

confusing, the instruction set makes sense after a while. Despite this, a description of the

BFM, SBFM and UBFM instructions for human beings would be very useful.

The big change is in the cache architecture, which is a real pain. We have not finished

with it yet.

Instruction set
I will only discuss the basic and integer portions of the instruction set here. There is a

full set of basic instructions plus enough special instructions for supporting cryptography,

security and ARM32 that one could already call the instruction set baroque.

Poor code density has been a problem for many RISC or load/store architectures. A side

effect of improving code density for ARM64 has been a selection of immediate value

encodings -

1) Arithmetic - 16 bit, 12 bit+shift, 12 bit, 8 bit, 7 bit, 6 bit.

2) Logical - 13 bit mask about 5000 options. Used by AND, ORR and EOR.

3) Branch offsets - 26 bits, 19 bits, 14 bits

4) Memory offsets - s19 bits, u12 bits, s9 bits, s7 bits, 0

The branch instructions result in a call range of +/-128 Mbytes. Most conditional

branches have a +/-1 Mbytes branch range. This is a vast improvement over many other

CPUs.

Because of the impact of mispredicted branches on performance, conditional

instructions reduce both code size and improve performance by avoiding conditional

branches, e.g. the end of WITHIN

 cmp		 tos, x17	 	 	 \ (n1-n2)-(n3-n2)

 csinv	 tos, xzr, xzr, .ls	 \ cy -> -1, ncy -> 0

 Conditional select invert

FORTH FOR ARM64 2

This instruction returns, in the destination register, the value of the first source register if the
condition is TRUE, and otherwise returns the bitwise inversion value of the second source
register. See: CSEL, CSET, CSETM, CSINC, CSINV, and CSNEG.

Caches
The cache system for ARM64 is quite different to that for ARM32. There L1 caches for

both code and data. The minimum cache line size is 64 bytes, but is permitted to be larger.

The size can be read by application programs running at execution level 0 (EL0). A limited

range of cache maintenance instructions can be run at EL0 that permit the cache to be flushed

by code running at EL0.

Tools
The main tools we use for porting are the VFX cross compiler. Testing is performed on

a 64 bit version of ARM linux. We have used both UTM and Parallels to host these on Apple

Silicon Macs. Apple produce a tool called Rosetta that enables x64 applications to run on

Apple Silicon. Two problems with Rosetta have forced us to abandon it.

	 1) x64 Forth cross compilers are slowed down by a factor of 100 or more.

	 2) There are bugs in Rosetta that have forced other projects to abandon it.

We have therefore moved back to cross-compiling on an x64 box, copying the output to

an ARM Linux and then debugging.

For both the cross compiler and the target code there are five sections that change for

each target

1) Assembler - an ARM64 assembler is provided with a prefix notation that closely

follows the ARM64 standard notation.

2) Disassembler - it is almost impossible to debug compiled native code without one.

3) Code generator and optimiser - produces faster and shorter code than that produced

by combining patterns. The VFX code generator is an analytical compiler that tracks

which registers are used and what they contain.

4) Required code - these are words that either cannot be written easily in high level

Forth, or should be written in assembler for performance reasons.

5) Operating system interface - calling functions in shared libraries and providing

callbacks that can be used by the operating system.

The following are examples of these.

FORTH FOR ARM64 3

code l!c(t)	\ l addr --

\ *G Store and Flush instruction cache line containing *\i{addr}.

\ ** Use in stores of code.

 ldr	 x0, [psp]!, # 8		 \ get l

 str	 w0, [tos, # 0]	 	 \ save l

 ic	 ivau tos	 	 	 \ flush

 dsb SY	 	 	 	 \ ensure completion of the invalidation

 isb SY	 	 	 	 \ ensure instruction fetch path sees

	 	 	 	 	 	 \ new I cache state

 ldr tos, [psp]!, # 8	 \ restore TOS

 ret	 x30

end-code

dis l!c(t)
L!C(T)
(0041:1850 A08740F8) LDR X0, [XPSP]!, # $8
(0041:1854 400300B9) STR W0, [XTOS, # $0]
(0041:1858 3A750BD5) SYS $1BA9 XTOS
(0041:185C 9F3F03D5) DSB # $0F
(0041:1860 DF3F03D5) ISB # $0F
(0041:1864 BA8740F8) LDR XTOS, [XPSP]!, # $8
(0041:1868 C0035FD6) RET XLR (NEXT/EXIT)
28 bytes, 7 instructions.

: InOvl? \ addr1 -- addr2|0
\ *G Returns the overlay address (addr2) if the address (addr1)
\ ** is within an overlay, otherwise returns 0.
 ovl-link @
 begin	 	 	 	 	 	 	 \ -- addr *ovl
 dup
 while	 	 	 	 	 	 	 \ -- addr *ovl
 2dup OVI.end 2@ within if		 \ -- addr *ovl
 nip exit
 then
 ovi.link @
 repeat
 nip	 	 	 	 	 	 	 \ remove addr
;

FORTH FOR ARM64 4

dis inovl?
INOVL?
(0042:9F88 00FF9AD2) MOVZ X0, # $D7F8
(0042:9F8C 2008A0F2) MOVK X0, # $41 LSL # $10
(0042:9F90 110040F8) LDUR X17, [X0, # $0]
(0042:9F94 BA8F1FF8) STR XTOS, [XPSP, # $-8]!
(0042:9F98 FA0311AA) MOV XTOS, X17
(0042:9F9C 9E8F1FF8) STR XLR, [XRSP, # $-8]!
(0042:9FA0 5F031FEB) CMP XTOS, XZR LSL# $00
(0042:9FA4 40020054) B .EQ # $429FEC
(0042:9FA8 50BF41A9) LDP X16, X15, [XTOS, # $18]
(0042:9FAC BD6300D1) SUB XPSP, XPSP, # $18
(0042:9FB0 AF0300F9) STR X15, [XPSP, # $0]
(0042:9FB4 A10F40F9) LDR X1, [XPSP, # $18]
(0042:9FB8 A10700F9) STR X1, [XPSP, # $8]
(0042:9FBC BA0B00F9) STR XTOS, [XPSP, # $10]
(0042:9FC0 FA0310AA) MOV XTOS, X16
(0042:9FC4 53A3FF97) BL # $412D10 WITHIN
(0042:9FC8 5F031FEB) CMP XTOS, XZR LSL# $00
(0042:9FCC BA8740F8) LDR XTOS, [XPSP]!, # $8
(0042:9FD0 80000054) B .EQ # $429FE0
(0042:9FD4 BD230091) ADD XPSP, XPSP, # $08
(0042:9FD8 9E8740F8) LDR XLR, [XRSP]!, # $8
(0042:9FDC C0035FD6) RET XLR (NEXT/EXIT)
(0042:9FE0 510340F8) LDUR X17, [XTOS, # $0]
(0042:9FE4 FA0311AA) MOV XTOS, X17
(0042:9FE8 CEFDFF54) B # $429FA0
(0042:9FEC BD230091) ADD XPSP, XPSP, # $08
(0042:9FF0 9E8740F8) LDR XLR, [XRSP]!, # $8
(0042:9FF4 C0035FD6) RET XLR (NEXT/EXIT)
112 bytes, 28 instructions.
 ok

FORTH FOR ARM64 5

	In the beginning …
	About the ARM64
	Instruction set
	Caches
	Tools

