Stephen Pelc, stephen@vfxforth.com
Wodni & Pelc GmbH
9 September 2025

Forth for ARM 64 CPUs

Trials and tribulations

ARM'’s 64 bit CPUs are very different beasts from the 32 bit ones. The instruction mix
Is completely different and appears to be derived from the Power PC. Cache
behaviour Is quite different and poorly documented. VFX Forth (64 bit) has been
ported to the ARMv8-A architecture and an alpha release is expected later in 2025.
The current Arm® Architecture Reference Manual for the A profile is 14,568 pages
long. Despite my reservations, the more | use this CPU, the more | come to
appreciate it. The code density is far better than expected.

In the beginning ...

Many years ago, the 32 bit ARM CPU appeared. Over the years various instruction sets
and derivatives appeared. As a company, ARM has always made frequent changes to the
instruction set to support the silicon. Unlike other companies, an ARM instruction set
supports today’s architecture. 64 bit ARMs are based on the ARMvS architecture from 2011,
and ARMvV9 already exists. ARMV9 is basically has the ARMvS instruction set with
extensions.

Under some customer pressure, we started a port of VFX Forth to the ARMvSA

architecture.

About the ARM64

The ARM 64 bit CPU in native mode has very little to do with ARM32, although the
original ARM32 and Thumb-2 ISAs are supported for legacy reasons and I shall discuss these
no further. There are several ARM64 assembler books out there; in the main they are useless

for people who have assembler experience and projects under their belt. You will find the

FORTH FOR ARM64 1

“Compiler Writer’s Guide to the Power PC” of use, and PowerPC assembler experience of
value.

The instruction set consists of 32 bit instructions only, with a number of conditional
operations derived from PowerPC. Many of the instructions have three operands. There are
32 registers, including a zero register and a subroutine return register. There are many
pseudo-instructions which offer a different syntax to the base instruction. Although initially
confusing, the instruction set makes sense after a while. Despite this, a description of the
BFM, SBFM and UBFM instructions for human beings would be very useful.

The big change is in the cache architecture, which is a real pain. We have not finished

with it yet.

I will only discuss the basic and integer portions of the instruction set here. There is a
full set of basic instructions plus enough special instructions for supporting cryptography,
security and ARM32 that one could already call the instruction set baroque.

Poor code density has been a problem for many RISC or load/store architectures. A side
effect of improving code density for ARM64 has been a selection of immediate value
encodings -

1) Arithmetic - 16 bit, 12 bit+shift, 12 bit, 8 bit, 7 bit, 6 bit.

2) Logical - 13 bit mask about 5000 options. Used by AND, ORR and EOR.

3) Branch offsets - 26 bits, 19 bits, 14 bits

4) Memory offsets - s19 bits, ul2 bits, s9 bits, s7 bits, 0

The branch instructions result in a call range of +/-128 Mbytes. Most conditional
branches have a +/-1 Mbytes branch range. This is a vast improvement over many other
CPUs.

Because of the impact of mispredicted branches on performance, conditional
instructions reduce both code size and improve performance by avoiding conditional
branches, e.g. the end of WITHIN

cmp tos, x17 \ (nl-n2)-(n3-n2)
csinv tos, xzr, xzr, .ls \ cy -> -1, ncy -> 0

Conditional select invert

FORTH FOR ARM64 2

This instruction returns, in the destination register, the value of the first source register if the
condition is TRUE, and otherwise returns the bitwise inversion value of the second source
register. See: CSEL, CSET, CSETM, CSINC, CSINV, and CSNEG.

The cache system for ARM64 is quite different to that for ARM32. There L1 caches for
both code and data. The minimum cache line size is 64 bytes, but is permitted to be larger.
The size can be read by application programs running at execution level 0 (ELO0). A limited
range of cache maintenance instructions can be run at ELO that permit the cache to be flushed

by code running at ELO.

Tools
The main tools we use for porting are the VFX cross compiler. Testing is performed on
a 64 bit version of ARM linux. We have used both UTM and Parallels to host these on Apple
Silicon Macs. Apple produce a tool called Rosetta that enables x64 applications to run on
Apple Silicon. Two problems with Rosetta have forced us to abandon it.
1) x64 Forth cross compilers are slowed down by a factor of 100 or more.
2) There are bugs in Rosetta that have forced other projects to abandon it.
We have therefore moved back to cross-compiling on an x64 box, copying the output to
an ARM Linux and then debugging.
For both the cross compiler and the target code there are five sections that change for
each target
1) Assembler - an ARM64 assembler is provided with a prefix notation that closely
follows the ARM64 standard notation.
2) Disassembler - it is almost impossible to debug compiled native code without one.
3) Code generator and optimiser - produces faster and shorter code than that produced
by combining patterns. The VFX code generator is an analytical compiler that tracks
which registers are used and what they contain.
4) Required code - these are words that either cannot be written easily in high level
Forth, or should be written in assembler for performance reasons.
5) Operating system interface - calling functions in shared libraries and providing
callbacks that can be used by the operating system.

The following are examples of these.

FORTH FOR ARM64 3

code 1llc(t) \

1 addr --

\ *G Store and Flush instruction cache line containing *\i{addr}.

\ ** Use

in stores of code.

ldr x0, [psp 1!, # 8
str w0, [tos, # 0]

ic ivau tos

dsb SY

isb SY

1dr tos, [psp 1!, # 8

ret x30

end-code

dis l'c(t)
L!C(T)

(0041:1850
(0041:1854
(0041:1858
(0041:185C
(0041:1860
(0041:1864
(0041:1868
28 bytes, 7

: InOvl?

AQ8740F8
400300B9
3A750BD5
9F3F03D5
DF3F@3D5
BA8740F8
CO035FD6)

instructions.

~— N N S S S

\ addrl —- addr2|0

P

get 1

save 1

flush

ensure completion of the invalidation

ensure instruction fetch path sees

new I cache state

restore TOS

LDR
STR
SYS
DSB
ISB
LDR
RET

X0, [XPSP 1!, # $8
wo, [XTOS, # $0]
$1BA9 XTOS

$OF

$OF

XT0S, [XPSP 1!, # $8

XLR (NEXT/EXIT)

\ *G Returns the overlay address (addr2) if the address (addrl)
\ %k is within an overlay, otherwise returns 0.

ovl-link @
begin

dup
while

2dup OVI.end 2@ within if

nip e
then
ovi.link

repeat
nip

xit

@

FORTH FOR ARM64

\

\
\

—— addr xovl

—— addr xovl
—— addr *xovl

remove addr

dis inov1?
INOVL?

(

e R e e R e R e e e e T e e e e e e e e e e e e s e

0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
0042:
112 bytes, 28 instructions.
ok

9F88
9F8C
9F90
9F94
9F98
9F9C
9FAQ
9FA4
OFA8
9FAC
9FBO
OFB4
9FB8
9FBC
9FCo
9FC4
9FC8
9FCC
9FD@
9FD4
9FD8
9FDC
OFEQ
OFE4
9FES8
9FEC
9FF0
9FF4

0OFF9AD2
2008A0F2
110040F8
BABF1FF8
FA0311AA
OE8F1FF8
5F0O31FEB
40020054
50BF41A9
BD6300D1
AFQ300F9
A10F40F9
A10700F9
BAOB0OOF9
FA0310AA
53A3FF97
5FO31FEB
BA8740F8
80000054
BD230091
OE8740F8
C0035FD6
510340F8
FAG311AA
CEFDFF54
BD230091
OE8740F8
C0035FD6

FORTH FOR ARM64

N S e N N N N e N N S S N n S N S e N S S S S SN S N N

)

MovZ
MOVK
LDUR
STR
MoV
STR
CMP
B .EQ
LDP
SuB
STR
LDR
STR
STR
MoV
BL
CMP
LDR
B .EQ
ADD
LDR
RET
LDUR
MoV
B
ADD
LDR
RET

X0, # $D7F8

X0, # $41 LSL # $10
X17, [X0, # $0]
XTOS, [XPSP, # $-8]!
XTOS, X17

XLR, [XRSP, # $-8 1!
XTOS, XZR LSL# $00

$429FEC

X16, X15, [XTO0S, # $18]

XPSP, XPSP, # $18
X15, [XPSP, # $0 |
X1, [XPSP, # $18]
X1, [XPSP, # $8]
XTOS, [XPSP, # $10 |
XT0S, X16

$412D10 WITHIN
XTOS, XZR LSL# $00

XT0S, [XPSP 1!, # $8
$429FE0

XPSP, XPSP, # $08

XLR, [XRSP]!, # $8

XLR (NEXT/EXIT)
X17, [XT0S, # $0]

XT0S, X17

$429FA0

XPSP, XPSP, # $08
XLR, [XRSP]!, # $8

XLR (NEXT/EXIT)

	In the beginning …
	About the ARM64
	Instruction set
	Caches
	Tools

