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Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 41st EuroForth
finds us in Hamburg; in 2024 it was held in Newcastle upon Tyne, and in 2023 in
Rome. Information on earlier conferences can be found at the EuroForth home
page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there have been no submissions to the refereed track. Since 2006, there have
been 32 submissions, 23 accepts, 72% acceptance rate.

Several papers were submitted to the non-refereed track in time to be in-
cluded in the at-conference proceedings. Late papers as well as those slides that
were submitted to the editor are included in these post-conference proceedings.
The proceedings website http://www.euroforth.org/ef25/papers/ also con-
tains links to videos of the presentations. I thank the authors for their papers
and slides. In addition to the papers and presentation handouts available before
the conference, these online proceedings also contain papers and presentation
handouts that were provided at or after the conference. Also, some of the papers
included in the printed proceedings were updated for these online proceedings.
I thank the authors for their papers and slide handouts.

You can find these proceedings, as well as the individual papers and (when
they become available) slides and links to the presentation videos on http:

//www.euroforth.org/ef25/papers/.
Workshops and social events complement the program. This year’s Euro-

Forth was organized by Ulrich Hoffmann.

Anton Ertl

Program committee

M. Anton Ertl, TU Wien (chair)
Marcel Hendrix, Eindhoven University of Technology
Jaanus Pöial, Tallinn University of Technology
Bradford Rodriguez, T-Recursive Technology
Bill Stoddart
Reuben Thomas

3

http://www.euroforth.org/
http://www.euroforth.org/ef25/papers/
http://www.euroforth.org/ef25/papers/
http://www.euroforth.org/ef25/papers/


Contents

Non-Refereed Papers

Bill Stoddart: Investigating Goodstein Sequences . . . . . . . . . . . . 5
Nick J. Nelson: Forth 2025 . . . . . . . . . . . . . . . . . . . . . . . . 12
Nick J. Nelson: Improvements to enumeration . . . . . . . . . . . . . . 24
M. Anton Ertl and Bernd Paysan: Code-Copying Compilation in Pro-

duction — An Experience Report . . . . . . . . . . . . . . . . . . 29
Late Non-Refereed Papers

Stephen Pelc: VFX Forth for AA64 Linux . . . . . . . . . . . . . . . . 46
Presentation Slides

Ulrich Hoffmann: Blending Forth - mixing other Languages and Forth 51
M. Anton Ertl: What is a character? UTF-8, Unicode, and the Xchar

wordset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4



Investigating Goodstein Sequences

Bill Stoddart

September 12, 2025

Abstract

The weak and strong Goodstein theorems are examples of strongly

counter intuitive results concerning certain integer sequences that typi-

cally grow very rapidly but eventually converge to zero. In this paper we

describe the weak Goodstein sequences and aim provide the reader with

an intuitive understanding of why the sequences converge. After that,

although the paper remains descriptive, it takes a mathematical turn. We

introduce transfinite ordinal numbers and demonstrate a decreasing se-

quence which bounds a weak Goodstein sequence above and terminates

in zero. We consider the extraordinary behaviour of the strong Goodstein

sequence and show how to construct corresponding decreasing sequences

of transfinite ordinals. We call for help from an AI model to do the heavy

lifting we require for our algebraic manipulations.

1 Introduction

A weak Goodstein sequence is constructed by choosing any number and and
expressing it in base 2. Successive numbers are formed by reinterpreting the
expression of the current number after incrementing the base, then subtracting
1. The Forth program G performs these steps, taking as input the first number
in the current sequence. Starting with 266 the first two steps are:

266 G

1000010102 = 26610
1000010103 − 1 = 1000010023 = 659010

At each step we increase the base, in this case from 2 to 3. Reinterpreting the
same string of characters in the new base gives a value which has increased from
266 to 6591. We then subtract 1.

Here are the following three steps:

1000010024 − 1 = 1000010014 = 6560110
1000010015 − 1 = 1000010005 = 39075010
1000010006 − 1 = 1000005556 = 167983110

Increasing the base and reinterpreting the same string of figures has an enormous
effect, again which the effect of subtracting 1 seems relatively insignificant. So
why do such sequences converge to zero?
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One initial hint can be seen in the above example. Although successive terms
grow rapidly in the above example their representations do not grow in size.

2 A small example

We take the example if 4 = 1002.

Reinterpreting the string 100 in base 3 gives us 1003 = 910.

Now subtracting 1 we see 1003 − 1 = 223 Subtracting 1 has required a carry
and in this case has reduced the size of the representation from 3 figures to 2.

Let’s follow the process and see if the 2 figures will eventually reduce to 1.

4 G

1002 = 410
1003 − 1 = 223 = 810
224 − 1 = 214 = 910
215 − 1 = 205 = 1010
206 − 1 = 156 = 1110
157 − 1 = 147 = 1110
148 − 1 = 138 = 1110
139 − 1 = 129 = 1110
1210 − 1 = 1110 = 1110
1111 − 1 = 1011 = 1110
1012 − 1 = B12 = 1110

When we arrive at base 6 our representation has a leading 1. At this point
increasing the base increments the sequence value by 1 and subtracting 1 reduced
it by 1 so the sequence values are identical until we arrive at base 12.

At this point our representation is 1012 − 1 = B12 and we have reduced our
representation to a single figure. With a single figure representation increasing
the base has no effect, so our sequence terms decrease by 1 at each step as
follows:

1012 − 1 = B12 = 1110
B13 − 1 = A13 = 1010
A14 − 1 = 914 = 910
915 − 1 = 815 = 810
816 − 1 = 716 = 710
717 − 1 = 617 = 610
618 − 1 = 518 = 510
519 − 1 = 419 = 410
420 − 1 = 320 = 310
321 − 1 = 221 = 210
222 − 1 = 122 = 110
123 − 1 = 023 = 010
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3 Potential and Achievement

Following the above discussion we wonder if we might be able to introduce some
definitions that that in some sense can capture the eventual reduction of the
length of our representation is a more finely calibrated way. With this in mind
we introduce Potential and Achievement.

Returning to our first example of 266 = 1000010102 we are starting with a
number which requires 9 bits for its representation. The maximum value we
can represent in binary with 9 characters at our disposal is 512-1 = 511. We
call this the potential of a 9 bit binary number. The value 1000010102 achieves
266/511 = 0.5205 of its potential, and we will say it has an achievement
of .5205. The maximum value we can represent in 9 places with a base 3
representation is 39 − 1 = 19628. The second value in our sequence is 6590,
so its achievement is 6590/19628 = 0.3450.

This pattern continues, so that as the values in the sequence initially increase
before eventually decreasing, the achievements of the terms is always decreas-
ing. Since an achievement of zero is associated with a number which is zero,
if we could prove that the achievements converge to zero, this would prove the
sequence converges to zero. However, proving the convergence of a sequence
of real values terms to zero is not in general easy to do, wheras a decreasing
sequence of positive whole numbers willalways decrease to zero. Could we per-
haps produce a decreasing sequence of positive whole numbers to act as upper
bounds to our sequence? With a sequence that increases to rapidly this would
seem difficult, but we will do it by admitting transfinite numbers.

4 Transfinite Numbers - defining numbers with

sets

The traditional proof of convergence for Goodstein sequences uses Cantors hi-
erarchy of “ordinal numbers”. We define numbers in terms of sets, as follows.

0 =̂ { } zero will be modelled by the empty set.
1 =̂ {0}
2 =̂ {0, 1}
...
n =̂ {0, 1, 2, .. n − 1} n is defined as the set of all numbers less than n.

Then if numbers a, b, a < b when a ⊆ b

The smallest set that is bigger than all the finite numbers is referred to as ω,
and is defined as follows:

ω =̂ {0, 1, 2, ... }.

This is our first transfinite number. We can define its successor as follows:

ω + 1 =̂ {ω, 0, 1, 2.....}

We can continue in this way defining a hierarchy of transfinite numbers
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ω, ω + 1, ω + 2, ... 2ω, 2ω + 1, , , , 3ω , ... ω2, ... ω3, ...ωω, ....

Note that although ω has a successor, it has no predecessor. ω− 1 is undefined.
It shares this property with other “limit ordinals”, e.g. 2ω, ω2, ωω etc.

5 Bounding the terms of a Goodstein sequence

using ordinal numbers

The terms of any Goodstein sequence can be bounded above by a decreasing
sequence of ordinals. A well known theorem states that any decreasing sequence
of ordinals terminates in zero, and we can call on this theorem to show that any
Goodstein sequence terminates in zero.

We give an example to show such a sequence of ordinals is created, and how it
decreases.

Base Term Transfinite bound
2 1002 = 22 ω2

3 32 − 1 = 2× 3 + 2 2ω + 2
4 2× 4 + 2− 1 = 2× 4 + 1 2ω + 1
5 2× 5 + 1− 1 = 2× 5 2ω
6 2× 6− 1 = 6 + 5 ω + 5
7 7 + 5− 1 = 7 + 4 ω + 4
8 8 + 4− 1 = 8 + 3 ω + 3
9 9 + 3− 1 = 9 + 2 ω + 2
10 10 + 2− 1 = 10 + 1 ω + 1
11 11 + 1− 1 = 11 ω
12 12− 1 = 11 11
13 11− 1 = 10
...

We have shown the sequence up to the point where the value of the current
term is represented by a single figure. From this point onwards any increase in
the base has no effect on the next value, so terms decrease by 1 at each step
until 0 is reached.

6 The Strong Goodstein Sequence

Strong Goodstein sequences are specifically designed to grow very rapidly. The
strong Goodstein sequence starting at 266 has the following values for its first
5 terms, yet eventually converges to zero.

266, 4.4 × 1036, 3.2 × 10616, 2.5 × 1010972

For perspective one can bear in mind that that the number of atoms in the
observable universe is commonly estimated to be in the region of 1080

A strong Goodstein sequence starts with a binary number expressed in “hered-
itary base notation”. This notation restricts us to describing base n numbers
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using exponentiation on n and addition of numbers 1 to n-1 to fill in intermediate
values. For example in base 2:

1 = 1, 2 = 2, 3 = 2 + 1, 4 = 22, 5 = 22 + 1, 6 = 22 + 2,

7 = 22 + 2 + 1, 8 = 22+1, 16 = 22
2

31 = 22
2

+ 22+1 + 22 + 2 + 1

The proof of convergence of the sequence constructs a corresponding decreasing
sequence of transfinite terms obtained by replacing the base by ω. As an example
we will take the sequence whose first term is 16, which is expressed in hereditary
base notation as 22

2

The initial transfinite term is obtained by replacing each 2
in the base 2 term with ω, giving ωω

ω

. The next term in the numeric sequence
is obtained by replacing each 2 in the hereditary base representation by 3 and
subtracting 1, giving 33

3

− 1. However, this is not in hereditary base 3 form.
The next transfinite term is given by expressing the numeric term in hereditary
base 3 and replacing each occurrence of the base 3 by ω.

7 Help from an AI model

Converting 33
3

− 1 to hereditary base 3 and producing the related transfinite
ordinal term requires non-standard and relatively heavy algebraic manipulation,
so I was curious to see if it would be useful to enlist the help of an AI agent,
in this case chatGPT 5, which had just been released and was supposed to be
capable of PhD level maths. After initial incorrect attempts in which it did
not interpreted hereditary base notation correctly, and I had to remind it that
ω−1 was undefined, and after being given the hint that since 33

3−1

has the form
x 3 − 1, we can use the identity x 3 − 1 = (x − 1)(x 2 + x + 1), it did produce
the complex formulae used in the rest of this section.

33
3

− 1 =

2× 32×3
2
+ 2×3 + 2 + 2× 32×3

2
+ 2×3 + 1 + 2× 32×3

2
+ 2×3 +

2× 32×3
2
+ 3 + 2 + 2× 32×3

2
+ 3 + 1 + 2× 32×3

2
+ 3 +

2× 32×3
2
+ 2 + 2× 32×3

2
+ 1 + 2× 32×3

2

+

2× 33
2
+ 2×3 + 2 + 2× 33

2
+ 2×3 + 1 + 2× 33

2
+ 2×3 +

2× 33
2
+ 3 + 2 + 2× 33

2
+ 3 + 1 + 2× 33

2
+ 3 +

2× 33
2
+ 2 + 2× 33

2
+ 1 + 2× 33

2

+
2× 32×3 + 2 + 2× 32×3 + 1 + 2× 32×3 +
2× 33 + 2 + 2× 33 + 1 + 2× 33 +
2× 32 + 2× 3 + 2

Note, we don’t go directly to calculating the value of the expression. We keep it
in this form, in which 3 is the current number base, so that we can obtain the
corresponding transfinite term by replacing each 3 by ω.
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2ω2ω
2
+ 2ω + 2 + 2ω2ω

2
+ 2ω + 1 + 2ω2ω

2
+ 2ω +

2ω2ω
2
+ ω + 2 + 2ω2ω

2
+ ω + 1 + 2ω2ω

2
+ ω +

2ω2ω
2
+ 2 + 2ω2ω

2
+ 1 + 2ω2ω

2

+

2ωω
2
+ 2ω + 2 + 2ωω

2
+ 2ω + 1 + 2ωω

2
+ 2ω +

2ωω
2
+ ω + 2 + 2ωω

2
+ ω + 1 + 2ωω

2
+ ω +

2ωω
2
+ 2 + 2ωω

2
+ 1 + 2ωω

2

+
2ω2ω + 2 + 2ω2ω + 1 + 2ω2ω +
2ωω + 2 + 2ωω + 1 + 2ωω +
2ω2 + 2ω + 2

The important point about this expression is that it represents a transfinite
number less than ωω

ω

. We can see this by comparing ωω
ω

to the highest order
term in the expression.

A reader might conceivable wonder why go to such bother. Can’t we just use
ωω

ω

− 1 as our next transfinite term? The reason is that ωω
ω

is a limit ordinal
and has no predecessor, so ωω

ω

− 1 is undefined.

8 Background and Related Work

Reuben Goodstein introduced his sequences in the paper “On the restricted
ordinal theorem”, Journal of Symbolic Logic, Vol. 9, No. 2 (June 1944), pp.
33–41. The sequences were specifically designed to provide an application for
transfinite ordinals, and hereditary base notation was specifically introduced
for describing the strong sequences. In L. Kirby and J. Paris, “Accessible inde-
pendence results for Peano Arithmetic,” Bulletin of the London Mathematical
Society 14 (1982), 285–293, we find a proof that convergence of the strong Good-
stein sequence cannot be proved in the usual formalisation of arithmetic using
Peano’s axioms. This result is sometimes cited as an illustrative example for
Gödel’s incompleteness theorem, which states that all non-trivial mathematical
theories must include results which are true but unprovable within the theory.

An unpublished paper of Cansell and Abrial represents the strong Goodstein
sequences as finite trees, and shows proof of their convergence can be deduced
from the properties of these finite trees.

9 Conclusions

We’ve looked at Goodstein Sequences and tried to give some understanding
of why these converge to zero despite initially growing so rapidly. The weak
Goodstein sequence grows by interpreting the same string of figures in a new
base, incremented by 1 at each step, then subtracts 1. Our first clue as to
why the -1 steps wins out over the base increase is to notice that the number of
figures used in the representation of each step does not increase. This allows the
-1 step to erode successive values until the value of the current term is expressed
as a single figure. At this point the base increase has no further effect and the
value of successive terms decreases by 1. Another clue is given by why value
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each term achieves in comparison with its maximum in the current base. The
“achievement” of successive terms diminishes.

The classic convergence proofs forGoodstein sequences use transfinite ordinals.
We give a short introduction to ordinal numbers, with finite numbers defined in
terms of finite sets, and show how this can be extended to introduce “transfinite”
numbers ω, ω + 1, ... which are represented by infinite sets. We show how each
weak Goodstein sequence is bounded above by a companion sequence whose
initial terms are transfinite ordinals and whose terms decrease, thus, by a well
known property of ordinals, inevitable arrive at zero.

Terms in the companion sequence are obtained by taking the expression of each
term in the first sequence, written in terms of the current base, and replacing
each occurrence of the base value by ω.

The same method is used with the strong Goodstein sequence, in which terms
are written using hereditary base notation In this notation, the coefficients of a
representation are also expressed in terms of the current base, greatly increas-
ing the effect of a base increment and generating some of the largest numbers
encountered in number theory. However we can still use the trick of producing
a decreasing companion sequence of upper bounds. Here we limited ourselves to
showing how one such term was generated, using an AI model to help us with
the algebraic manipulations.
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EuroForth 2025

Forth 2025

Abstract

Forth is stuck in a rut. Much energy seems to be spent in making tiny refinements to a
language specification that is 25 years old. In this paper, I shall propose some bold 
and radical changes, with the intention of returning Forth to its proper place as a 
useful and modern language.

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
Micross Automation Systems
Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire
HR9 7BW UK
Tel. +44 1989 768080
Email njn@micross.co.uk
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1. Introduction

It often feels like Forth is moribund! In the last few years, at this conference, I seem 
to be in a minority of delegates from commercial companies that use Forth in their 
main products. Yet, Forth still has huge advantages, and in the last few years at 
EuroForth, I have tried to highlight extraordinarily useful techniques that are possible
in Forth and are not possible in any other language that I know of.

One has to ask, why do more people not use Forth, given these advantages? Here are 
some possible answers:

a) These advantages are not stressed, in online descriptions of Forth. Instead, one sees
long descriptions of how antiquated the language is, and how quirky, and by 
inference how it is only chosen nowadays (rarely) for "niche" applications.

b) If someone, who is assessing which new language to choose, accidentally comes 
across the Forth standards website, they will ask (after a near death experience due to 
terminal boredom) "yes, but what is it for, what can it actually do, that others 
cannot?" - and no answer is given.

c) Forth really does have some antiquated absurdities, the reasons for which are lost 
in the mists of time.

d) Forth does not initially appear to have many features that are essential for modern 
programming.
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2. What are the true advantages of Forth?

a) You can do things during compilation. This includes quite complicated things like 
querying databases. This feature opens up a whole realm of extraordinary 
possibilities, some of which I have attempted to demonstrate at many previous 
conferences.

b) In fact, you can do anything in Forth. Although there may be guidelines, you are 
not prevented from doing anything you like. (Of course, this also enables an 
incautious programmer to get into deep trouble.)

c) Forth can be completely freely formatted. This enables and encourages you to 
write concise, highly readable and easily maintainable code. (Of course, it also 
enables you to write complete gibberish, if you really want to.)

d) Forth is interactive, and you can easily arrange for this to continue even while your

application is running.

e) The edit-compile-execute-test-debug cycle is extraordinarily quick and efficient in 
Forth. This is mainly because everything except the edit is done within Forth itself. 
The old adage "Forth is its own compiler" is still just as true today.

f) If there's some Forth word you don't like, you can always redefine it. 
See section 5 below!

3. What previous advantages of Forth no longer apply?

In the past, Forth was often described as being fast, compact, and so simple that 
anyone could write their own compiler in a day.

It is true that Forth is still fast and compact. However, to achieve speed when 
targetting a modern and highly complex CPU, you need an optimising compiler, 
which is not built in a day.

As regards compactness, who cares any more? If your program won't fit, spend 5 
Euros on some more memory. 

4. What do we need to do?

● Get rid of the bad bits.

● Enhance the good bits.

● Add the missing bits.
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5. The bad bits - WITHIN

I have never known a word, in any language, that has caused so much trouble to so 
many programmers.
3 1 3 WITHIN BOOL. False  ok

The worst thing about it is that because this affects a boundary condition, a mistake 
may not be seen until an application has been running for weeks.

We got to this state because of incorrect mathematics, which assumed that the input 
parameters were real numbers. But they are not - they may only be integers. The 
correct mathematics is to ask whether the integer 3 is within the set {1,2,3}. 

I guess it's not possible to completely get rid of WITHIN, but one could at least move
it to the "Optional Badwords" wordset! Then we could introduce a new core word - 
perhaps MEMBER - which is inclusive.

At the very top of every build file, we have to redefine WITHIN. It occurs 1094 times
in our main application.

6. The bad bits - CASE

It's the default clause of a CASE construction that causes so many programming 
errors. Again, the mistake might not be seen for a long time. The perfectly simple 
solution is to keep the index on the return stack instead of the number stack.

At the very top of every build file, we have to redefine CASE and all its other words. 
A CASE construction occurs 830 times in our main application.
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7. The DO...LOOP conundrum

Observations

a) There are 1612 DO...LOOP constructions in our main application.

b) We currently have a rule that if either of the two input parameters is not a 
constant, then we always use ?DO instead of DO. We have 1018 ?DOs and 594
DOs.

c) Earlier on in our development process, we defaulted to 0-based indexing 
(computer friendly). About two years ago, we changed to 1-based indexing 
(human friendly). We did not modify old 0-based code. 

d) We have 1281 instances of either 0 DO or 0 ?DO.
We have 329 instances of either 1 DO or 1 ?DO.
In only two cases out of 1612 do we use anything other than 0 or 1 as the
second parameter.

e) A disadvantage of using 1-based indexing is that the first parameter for DO 
frequently requires 1+. Forgetting to do the 1+ is a common cause of 
programming errors.

f) There are only 3 instances of +LOOP.

Conclusions

a) Move DO, ?DO, LOOP and +LOOP to an optional wordset.

b) Introduce a new and much simpler looping construct, perhaps 
FOR ( n--- ) ... NEXT which loops n times, but skips completely
if n < 1.

c) Retain the same return stack structure as a DO...LOOP, so that
I, J and LEAVE work as before.

This would satisfy 99.8% of our loop requirements, with the benefit of greater 
security and simplicity.
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8. Values not variables

As far back as Euroforth 2000, I started advocating for the deprecation of 
VARIABLE, @ and !, and the promotion of VALUE. The reasoning for that may be 
found in my previous paper.

Modifiers (they should not be called operators) should be standardised, enumerated 
and extendable. Attempting to apply a modifier to an unmodifiable word should give 
a compilation error.

At present, our main application has 105 remaining VARIABLEs - these are mostly 
because we have not yet redefined the VFX chain functions, which currently require a
VARIABLE root. By contrast, there are 1334 VALUEs.

The issue of thread local VARIABLEs or VALUEs will be discussed in section 13.

9. Add VINDEX, VMATIX, STRINDEX

What modern language could be without proper standardised support for arrays and 
matrices?

My Euroforth 2000 paper also proposed:
a) VINDEX for an array of CELLs
b) VMATRIX for a two dimensional matrix of CELLs
c) STRINDEX for an array of strings.
d) VFIELD and derivatives, for structures

It turned out that some very large VINDEXs and VMATRIXs were wasting a lot of 
space by using 64 bit cells when for example only byte values were required. We 
have therefore extended the concept to provide byte, word and int (32 bit) flavours.

By now, we can't imagine how we managed without them.

There are 210 VINDEXs, 28 VMATRIXs and 26 STRINDEXs in our main 
application. This excludes the byte, word and int flavours (there are for example 15 
VBINDEXs), and the dynamically generated VALUEs, VINDEXs and STRINDEXs 
resulting from the replacement for the Windows registry settings, also described in a 
different 2020 paper.

I should add that I am not particularly happy with the naming of some of these words,
and would be quite happy to change the names, provided the new name was shorter.
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10. Add ENUM<<

How is it possible for a language to survive without a standardised enumeration 
function? I described a fully Forth faithful enumeration at Euroforth 2023, and some 
enhancements were described earlier at this conference. Surely, this should at least 
form a part of an optional word set?

11. Zstrings

It must be at least 30 years ago that I first started advocating a general move from 
counted strings to zero terminated strings. The original reason was that any serious 
application is likely to need to interact with the native operating system, and also 
external libraries with "C" interfaces, and, of course, Windows, Linux and C libraries 
all use zstrings. Back in the days of Windows 95, it was not certain which side the 
coin would fall, and the 32 bit Windows version of our main applications extensively 
used "bi-strings", that is zero terminated counted strings. By the time we moved to 
Linux, initially 32 bit then soon after 64 bit, it became clear that we were in a zero 
terminated world, and support for both cstrings and bi-strings was dropped.

As I wrote this, I searched for "zero terminated" in the Forth standard and got "NO 
RESULTS" - which gives the clear impression that Forth is not a suitable language to 
use with Windows, Linux or C libraries!

The four essential words needed are:
a) A word to define a z-string - currently:

: Z" ( Comp: "ccc<quote>"--- ; Run: ---zaddr )

However, I note that the simple word " is still unused in standard Forth, so why
don't we use that?

b) A word to type the z-string (used only for debugging) - currently:
: Z$. ( zaddr--- )
But see section 18 below.

c) A word for concatenating zstrings - currently:
: Z+ ( zaddr1,zaddr2---zaddr3 )
Note that this word MUST be thread safe, and must not involve any garbage 
collection. Also see section 18 below.

d) A word to format a number as a zstring - currently:
: ZFORMAT ( n---zaddr)

There are 3446 instances of Z", 1482 instances of Z+ and 432 instances of 
ZFORMAT in our main application.
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Also frequently used, are:
: ZDIGITS ( n1---n2 ) \ If n1 is zero, return zero. Otherwise assume n1 is the address 
of a zero terminated string, and convert the string to a number.
: Z= ( z$1,z$2--- f ) \ True if two zstrings are the same
: Z<> ( z$1,z$1---f ) \ True if two zstrings are not equal
: ZCAT ( z$1,z$2---z$1 ) \ Concatenates z$2 to the end of z$1
(The user responsible for the buffer z$1 in the above)
: ZINITIATOR ( zaddr---zaddr' ) \ Find start of a zero initiated string
: ZTRAILING ( z$--- ) \ A zstring is adjusted to exclude trailing spaces
: ZLIMIT ( saddr,maxlen--- ) \ Adds a zterm to a string of specified maximum length
: ZMOVE ( src,dst--- ) \ According to the documentation, all this does is show off the 
VFX optimiser!!

In addition, a subset of the file access words are, as needed, converted to use zero 
terminated names.

12. UTF8

Forth needs to realise that the world has moved on from ASCII. The use of UTF8 is 
almost universal. Fortunately, UTF8 strings are single zero terminated, so all the 
zstring words above still work.

I am not quite sure what the XCHAR wordset in the Forth standard is for. All our 
applications are dynamically multilingual - yet we have never needed any of the 
XCHAR words.

One thing definitely needs fixing - C@. What this ought to do is fetch the UTF8 
character at the address. If byte acting words are really needed, they should be B@ 
and B!.
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13. Threads

These days, only the most trivial applications run in a single thread - yet Forth has no 
standard wordset for handling threads. Anyone approaching Forth for the first time 
would be under the impression that Forth does not do threads!

VFX does of course have quite good thread support, but there are three important 
improvements that are needed.

a) "User" variables (effectively thread-local variables) need to be converted to thread-
local values.

b) A method of initialising the thread-local values is needed. 

c) A better method of dealing with thread-local memory is needed.

There are 40 threads in our main application, though typically only half a dozen are 
running at the "same time".

14. Execution chains

This has been a feature of MPE Forths for many years, but it is only recently that we 
have discovered how extremely useful it is. This is another example of a concept that 
is easy in Forth, but quite hard if not impossible in most other languages.

15. Libraries and externs

Yet again, we have a situation that the Forth standard does not mention something 
that is a necessity for any serious application!

16. Databases

And again, how many real life applications need to access databases? The Forth 
Query Language (FQL) has been around for years and is rock solid. Dare I have the 
impertinence to suggest it should go into the standard?
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17. Locals

A frequent criticism of Forth is that stack manipulation makes it hard to read. Stack 
manipulation should be de-emphasised in favour of locals. 

The Forth standard needs to be completely rewritten to use:
{ <ins> | <locals> -- <outs> }
where standard ins and locals behave like VALUE (with all modifiers permitted), and 
other data types (e.g. float, string) are available. Locals should be automatically 
initialised.

17. Doubles

Think of one of the most popular and inexpensive tiny computers - the Raspberry Pi. 
It has a 64 bit CPU. Do we really need double length integers any more? 

Let us try and think of some very large numbers, for example the US national debt.
At the instant of writing, this stood at $37,289,586,478,935. The largest unsigned 
number representable in 64 bits is 18,446,744,073,709,551,615. We could express the
US national debt in cents and still have plenty of headroom!

The reason for raising this issue is because when we demonstrate interactive Forth to 
a newcomer, they quickly understand it.

2 2 + . 4 ok Nice!

But shortly afterwards, they will try:

1.2 3 + . 3 ok-1 WHAT??? 
That takes a lot of explaining, and it is completely unnecessary.
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18. Numbers, and things

This brings me to possibly the most radical proposal, which is to address the issue of 
why 1.2 3 + does not work, when it so easily could work.

The first and easiest fix is that when we are free from double numbers, the floating 
point recogniser could accept 1.2. 

The next thing to think about is data types. From the birth of Forth, there was an 
assumption that everything was integer. There was no need to consider data types, 
because there was only one.

We were told that floating point was slow, used a lot of expensive memory, and was 
unnecessary.

This has not been true for decades. Floating point is just as quick as integer, uses the 
same amount of memory, and is essential. So a floating point wordset was tagged 
onto Forth, and you had to remember to put an F in front of everything.

Furthermore, type conversion is manual, and you have to remember where you are on
two different stacks.

There are 544 instances of S>F and 144 instances of F>S in our main application. 
There are no instances of F>D or D>F. This leads us to consider that maybe in the 
future floats should be the default, and that to specify an integer you need to put a 
prefix, just like you do to specify a hex number.

A more interesting idea might be to merge the data stack with the floating point stack,
and instead add a type stack. The basic addition word, and many others, could then 
become type smart. Now we are away!

1.2 3 + . 4.2 ok
" abc" " 123" + . abc123 ok
3 1 3 WITHIN . True ok \ YEA!!

" 欧洲会议" 2 + . 会议 ok  \ That is "European conference", by the way.

Against that, there is sure to be the argument of speed. However:

a) Nowadays, most computing time is spent inside library calls, not in Forth itself.
b) If your program runs too slowly, spend 5 Euros on a faster PC - it's much cheaper 
than buying a programmer's time.
c) Constant arithmetic of mixed type as in the examples above would in any case be 
resolved by the optimiser at compile time, not at run time.
d) If you really, really needed to speed up some critical routine, the explicit arithmetic
and type conversion words would still be available.
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19. Conclusion

I hope that these notes and observations will lead to some radical changes to the Forth
standard very quickly, so as to restore it to being a language of choice for discerning 
programmers.
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1. Introduction

At Euroforth 2023 I proposed for standardisation a new enumeration wordset:

ENUM<< <enumname>

   [<Forth expression>] <membername> [\ <comment>]

   ...

>>

For example, one could do:

This was well received by my colleagues. But it wasn't long before requests for extra 

features came along.

ENUM<< TESTENUM \ Name of the enumeration
  AZERO \ By default, the enumeration starts at zero
  AONE \ Standard Forth comments are allowed
  1 2 + ATHREE \ Any Forth expression can be used to set the enumeration
            AFOUR \ The enumeration increments
>> \ Enumeration terminator

TESTENUM SHOWCHAIN 
AFOUR 
ATHREE 
AONE 
AZERO  ok
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2. Add translated descriptions to the enumeration

A translated description of an enumerated value is a frequent requirement, and this 

was normally done in a separate word e.g. for the above example, it might have been:

Clearly it would have been a lot easier to define the description phrase from within 

the enumeration, rather than in a separate word. So now we have:

ENUM<< <enumname>

   [ <Description> ] [<Forth expression>] <membername> [\ <comment>]

   ...

>>

But now there are two optional items before the member name. How can we possibly 

tell them apart, give that Forth has no data types? In particular, <Description> cannot 

consist of a phrase number, because 

a) The phrase number could theoretically be quite a small number, well within the 

likely range of enumeration numbers.

b) During the build process, some enumerations are needed before we build the 

database access wordset, so that translatable phrases are not available at the point of 

definition of the enumeration.

This was a challenge, until we realised that when a zero terminated string is defined 

using Z" , you always get an address that is nowhere near HERE, which is where it 

always used to be. Strings are in fact always presented on a recently invented space 

called SYSPAD. 

Since SYSPADSTART is typically a very large number e.g.

this now gives us a way of distinguishing the two data types int and string, in all 

cases of int that are likely to be enumerated.

: TESTENUMDESCR ( enval---z$ ) \ Returns translated phrase describing enval
  CASE
    AZERO OF P" Zero" ENDOF
    AONE OF P" One" ENDOF
    ATHREE OF P" Three" ENDOF
    AFOUR OF P" Four" ENDOF
    ^NULL
  ENDCASE
;

SYSPADSTART . 140734512400720  ok
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We could now get as far as:

Our enumeration recogniser now looks like this:

 

We can still only save the original description though, not the translatable phrase 

number, which is not yet available. We've just left a space for it.

You will see that we create a list of all members of each enumeration, and there is a 

similar list of all the enumerations too.

It was not clear at the time precisely how these lists could be used - but now they 

proved to be really useful.

Right at the end of the build process, by which time all enumerations have been 

defined, and the database is up and running, we can execute a word that loops 

through all the enumerations and their members. It extracts the original description 

and matches it to a phrase number, creating new translatable phrases as necessary. It 

then pops the phrase number into the previously reserved space.

ENUM<< TESTENUM \ Name of the enumeration
             AZERO \ By default, the enumeration starts at zero
              AONE \ Standard Forth comments are allowed
  1 2 +           ATHREE \ Any Forth expression which has a stack effect... 

\ ...( ---n ) can be used to set the enumeration
                  AFOUR \ The enumeration increments
  Z" Customer" 11 AN11        \ Description and enumval
  Z" Category"    A12         \ Just a description
                  A13         \ Neither
>> \ Enumeration terminator

: ENUMINTERPACTION ( ??,caddr,u--- ) \ Interpreter action for enum recogniser
  ^NULL -> ENUMZ$                               \ Assume no description
  DEPTH 2 - 0 ?DO                               \ Deal with any preceding values
    ROT DUP SYSPADSTART DUP /SYSPAD + WITHIN IF \ It is an address within the 

\ strings buffer area
      -> ENUMZ$                                 \ Use it as a description
    ELSE                                        \ Probably not a string
      -> ENUMVAL                                \ Use it as a new enum value
    THEN
  LOOP
  ($CREATE)                 \ Create the enumerated name
  ENUMVAL ,         \ Set the constant value
  0 ,                                           \ Reserve space for phrase number
  ENUMZ$ ZCOUNT Z$,                             \ Compile description string
  INC ENUMVAL         \ Next enumeration number
  LATEST-XT ENUMLIST ATEXECCHAIN         \ Add to list
  ['] ENUMVALCOMP, SET-COMPILER       \ When an enumerated constant is 

\ being compiled
  INTERP> ENUMVALINTERP         \ When an enumerated constant is 

\ being interpreted
;
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We have previously defined two new modifiers (I do wish they were not called 

operators in VFX), which enable us to easily access the original text and the phrase 

number of any enumerated member.

3. Making enumerated values available in external database queries

The second request from my colleagues was that enumerated values should be 

available automatically in the database. Generally, our main application, in Forth, is 

supported by several "dashboard" apps. The Forth program controls the system and 

places reportable information into the database. The dashboards, which require no 

programming, just configuration, display live data. Part of the configuration is the 

provision of an SQL statement that the dashboard can use to extract the data it needs. 

Previously, the SQL statements were littered with "magic numbers" representing our 

enumerated values. Every time a change was made to an ENUM<< in the Forth code,

the dashboard configurations had to be checked in case any magic numbers had 

changed.

The solution was to create, automatically, a "loadable function" in the database, for 

each enumeration member. Then, a function can be used instead of a magic number 

inside an SQL query, and the results always match. For example

OPERATOR: ENUMPHRASE   \ Returns the phrase number of an enumerator
  OP# ENUMPHRASE CONSTANT OPENUMPHRASE
OPERATOR: ENUMDESCR \ Returns the address of the description
  OP# ENUMDESCR  CONSTANT OPENUMDESCR   

REPEV_CHCUS . 92  ok
SQL| SELECT REPEV_CHCUS() |SQL>> 
+---------------+
| REPEV_CHCUS() |
+---------------+
| 92            |
+---------------+ ok
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We can now take a look at a simplified version of the word which does all this, right 

at the end of the build.

4. Conclusion

A lot of this would have been easier if data types were more easily available - see my 

next paper "Forth 2025".

: SETENUMPHRASES \ Place phrases for enumerations and create DB function
  { | penumname[ 255 ] pelementname[ 255 ] pelementnum plementdescr[ 255 ]
      pphrase -- } 
  ENUMSLIST @ BEGIN                                     \ Anchor of enumerations
  DUP WHILE                                             \ Another enumeration
    DUP CELL+ @                                         \ Get xt of enumeration
    DUP IP>NFA 1+ penumname[ ZMOVE                      \ Get name
    EXECUTE @ BEGIN                                     \ Get anchor of elements
    DUP WHILE                                           \ Another element
      DUP CELL+ @                                       \ Get xt of element
      DUP IP>NFA 1+ pelementname[ ZMOVE                 \ Get name of element
      >BODY                                             \ To element data
      DUP @ -> pelementnum                              \ Get element number
      DUP 2 CELLS+ plementdescr[ ZMOVE                  \ Get description
      SQL| DROP FUNCTION IF EXISTS                      \ Discard old function
           | pelementname[ >SQL | 
      |SQL
      plementdescr[ C@ IF                               \ Description is defined
        SQL| CREATE FUNCTION                            \ Create new function
             | pelementname[ >SQL | () 
             RETURNS INT 
             DETERMINISTIC                              \ If replication used
             RETURN | pelementnum FQL-N+ | 
        |SQL
        plementdescr[ FINDPHRASE -> pphrase             \ Get phrase number
        pphrase SWAP CELL+ !                            \ Set in element data
      ELSE                                              \ No element description 
        DROP                                            \ Address of data
      THEN
      @                                                 \ Get next element
    REPEAT DROP                                         \ Discard element chain
    @                                                   \ Get next enumeration
  REPEAT DROP                                           \ Discard chain
;
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Abstract

A code-copying compiler implements a program-
ming language by concatenating code snippets pro-
duced by a diûerent compiler. This technique has
been used in Gforth since 2003, with code snippets
generated by GCC. We have solved various chal-
lenges: in particular, which code snippets can be
copied and what to do about the others; and chal-
lenges posed by changes in compilers. The perfor-
mance of Gforth is similar to that of SwiftForth,
a commercial system with a conventional compiler;
the implementation eûort is comparable to 132 tar-
gets for SwiftForth.

1 Introduction

Code copying is a programming language imple-
mentation technique where the compiler of the im-
plemented languate A concatenates code snippets
coming out of the compiler for language B. While
there have been a number of research papers about
this topic (see Section 8), we know of only one pro-
duction language implementation that has used this
approach for a long time: Gforth.

The present work is an experience report about
the use of code copying in Gforth: How does it com-
pare to a conventional compiler (Section 2)? Sec-
tion 3 explains the concepts of code copying, while
Section 4 discusses various implementation aspects.
We also discuss the problems from changes in com-
pilers (Section 5) and operating systems (Section 6)
and how we overcame them.

In addition to this experience report, this pa-
per also discusses alternative approaches (Section 7)
and related work (Section 8).

The present work also appears in the KPS 2025
proceedings, with the same content and diûerent
formatting.

1.1 Is Gforth a production system?

Gforth is free software that has been developed
since 1992 and ûrst released in 1996. As it is free
software, everybody can use it without contacting

∗anton@mips.complang.tuwien.ac.at

us, and few people do, so we do not know that
much about who uses it for what purpose. How-
ever, we know that it has been used by IBM and
Apple in their work on Open Firmware, and Forth,
Inc. (who develop SwiftForth, but also give Forth
courses) have given courses using Gforth, also in
the Open Firmware context. So: Yes, Gforth is a
production system.

2 Why not just write a con-

ventional compiler?

One reason why people may have avoided going
for a code-copying compiler is the assumption that
writing a conventional compiler will produce better
code, or require less eûort. By <conventional= we
mean that there is a large amount of hand-written
architecture-speciûc code for each target architec-
ture in the compiler. So before we go into details
about code copying, we will address this concern.

2.1 Performance

Figure 1 shows the performance of the gforth-fast

engine of Gforth1 with various optimizations, of two
commercial conventional Forth compilers (Swift-
Forth and VFX Forth), and, for of GCC-12.2
gcc -O0, -O1, and -O3. All Forth systems use load-
and-go compilers (compile time is included in the
results), while GCC uses ahead-of-time compilation
(only the run-time is shown in the results).

Not all benchmarks are available in C, and not
all benchmarks run on all Forth systems, and the
missing cases are reûected by missing bars.

The data shown is the median of 30 runs for
each benchmark/system combination on a Core
i5-1135G7 (Tiger Lake); each bar represents the
number of cycles of Gforth with only code copying
divided by the number of cycles of the system
represented by the bar, i.e., the speedup of that
system over Gforth with only code copying. The
Gforth version used is 0.7.9_20250817, commit
4224ab5fafea970dade64b04493ef690da8b3c32

1Gforth also has an engine gforth intended for debugging.
All referenences to Gforth performance refer to gforth-fast.
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Figure 1: Speedup factor of various systems over Gforth with code copying, on a Core i5-1135G7 (Tiger
Lake)

compiled with gcc-11.4. The benchmarks are from
the Forth appbench suite (benchgc3fcp), Gforth9s
small (and mostly loop-dominated) benchmarks
(siev3ûb), and two additional ones.

As can be seen, the performance of Gforth with
all optimizations is similar to that of SwiftForth,
which uses a conventional compiler, and typically
around half of the performance of VFX Forth, which
also uses a conventional compiler.

Before comparing Gforth with the others, let9s
ûrst take a look at the variants of Gforth, starting
with the one with the best performance/eûort:

Threaded code This is a fast interpretation tech-
nique for virtual-machine (VM) code, without
any machine-code generation (see Section 3.1).

Code copying This method concatenates code
snippets from the threaded code engine (see
Section 3). It requires an estimated 500 lines
of code in the Gforth source code. With this
method Gforth still accesses literal data and
performs control ûow by accessing the VM
code; it therefore also maintains a VM instruc-
tion pointer (IP), and updates it once for every
VM instruction.

IP-update optimization This optimizaton re-
duces these IP updates. It was added by in-
serting 864 lines and deleting 316 lines in the
Gforth source code [EP24].

Stack caching (actually static multi-state stack
caching) eliminates many memory accesses to

stack items and stack-pointer updates [EG04a,
EG05]. The way this optimization as imple-
mented in Gforth requires code copying to
work.

Static superinstructions replace a sequence of
Forth words with an optimized sequence
[EGKP02]. Many of the beneûts that static
superinstructions have originally provided are
now provided by code copying, the IP-update
optimization and static stack caching; there are
still cases where static superinstructions result
in shorter code, but this has not led to consis-
tent speedups in these measurements.

The code implementing stack caching and static
superinstructions is quite interweaved with the rest
of the code, so it is hard to give precise numbers
for their size, but we estimate [Ert24] that all four
optimizations combined require an estimated total
of 5000 lines of code.

SwiftForth9s compiler can be seen as a copy-and-
patch compiler, but with the code snippets written
by hand in assembly language and better result-
ing code than when patching using object ûle link-
age imformation (see Section 7.3). SwiftForth does
not have a VM interpreter substrate, and there-
fore does not have IP updates, so it gains the ben-
eûts of the IP update optimization without hav-
ing to do anything. It deals with literal values
and control ûow by patching the code. SwiftForth
does not perform multi-state stack caching, but it
makes extensive use of static superinstructions (346
rules in 1819 lines). Overall each of the IA-32 and
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AMD64 targets of SwiftForth has about 7000 lines
of architecture-speciûc code [Ert24].

Gforth with all optimizations is competetive in
speed with SwiftForth, so apparently Gforth9s stack
caching provides enough speedup to compensate the
costs that Gforth incurs for literals and control ûow.

VFX Forth performs register allocation of data-
stack items within a basic block, and inlines aggres-
sively; inlining is very helpful for idiomatic Forth
code, where calls and returns are the most frequent
basic block boundaries. Therefore inlining also en-
hances the eûectiveness of VFX9s register allocator.
The speed advantage of VFX over Gforth and Swift-
Forth is a result of these optimizations. In particu-
lar, for the cd16sim benchmark there is one call site
that calls an empty deûnition and that is responsi-
ble for 2/3 of Gforth9s run-time on this benchmark,
while VFX inlines it away. We have no source code
for VFX and therefore cannot report numbers about
the size of its compiler. When asked about the ef-
fort to port VFX to ARM A64 (a currently ongoing
project), Stephen Pelc gave the qualitative state-
ment <far too much=.

VFX is faster than Gforth by typically around a
factor of 2. However, it is possible to perform in-
lining in Gforth, too, with direct performance ben-
eûts as well as indirect beneûts from better stack
caching. It will be interesting to see how far Gforth
(and code copying) can close the gap.

Gforth9s performance with all optimizations is
roughly comparable to that of gcc -O0 on those
benchmarks that are also available in C. gcc -O1

and gcc -O3 often produce signiûcantly faster code;
sometimes they don9t, but the reasons for that are
beyond the scope of this paper.

2.2 Portability

A major reason to avoid implementing a conven-
tional compiler is portability/retargetability.

Gforth has supported as many architectures as we
could get our hands on, as long as gcc and some-
thing Unix-like (e.g., Cygwin for Windows) is avail-
able on the architecture. Gforth has supported the
following architectures with a code copying com-
piler: Alpha, ARM A32/T32, ARM A64, HPPA,
IA-32, IA-64, Loongarch, SPARC, PowerPC, Pow-
erPC64 (but we no longer can check for all archi-
tectures that they still work). Gforth supports all
architectures it does not know about by falling back
to threaded code, which is slower, but still works.

In particular, when IA-64 (launched 2001) and
AMD64 (launched 2003) became available to us in
2003, Gforth worked out of the box on these archi-
tectures2 using the unknown-architecture support,
likewise for ARM A64 in 2014 and RISC-V in 2017.

2We added 64-bit support in 1996 while doing the Alpha
port.

A few small changes enabled code copying3, and a
one-line change for conûguring the number of reg-
isters for stack caching.

The beneût of code copying is that it reuses the
retargeting eûorts of the compiler it is based on
(GCC or Clang in case of Gforth).

By contrast, SwiftForth has supported only IA-
32 until the 2020s, when they started working on
an AMD64 port (released on 2025-10-22). VFX has
supported IA-32 initially, later ARM A32, and, also
starting in the 2020s, AMD64. Both systems have
interactive cross-compilers for a number of embed-
ded targets.

The low number of desktop ports and the late
support for AMD64 may be due to lack of com-
mercial interest, but we think that the larger eûort
required to retarget and maintain the compiler for
another architecture has something to do with it.
iForth, another conventional Forth compiler, got an
AMD64 port in 2009, but the IA-32 port was sub-
sequently dropped (last release with IA-32 support
in 2011).

2.3 Incremental development

Another beneût of code copying over writing a con-
ventional compiler is that it can be done step-by-
step: First add code copying, then add one opti-
mization (e.g., IP-update optimization), then the
next, etc., always with the fallback options of dis-
abling the optimization or completely falling back
on threaded-code interpretation.

By contrast, when coming from an interpreter,
the conventional model requires a big-bang ap-
proach where a complete code generator for one tar-
get has to be developed without reusing much from
an existing interpreter; and as long as you do not de-
velop code generators for all targets, you still need
to maintain the interpreter, as well as all the com-
piler targets. The latter will hopefully be helped by
designing the compiler for retargetability, but that
increases the complexity of the compiler framework.

3 What is code copying com-

pilation?

3.1 Threaded Code

The basis for Gforth9s code-copying implementation
is a threaded-code interpreter [Bel73] for Gforth9s
virtual machine (VM).

3For RISC-V, this was our first encounter with gcc-7 and
its more aggressive code duplication (Section 5.4); we needed
a little longer to find a workaround for that, but that’s not
specific to the architecture.
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lit
0
i
c!
dup
(+loop)
loophead

VM code
threaded code

RISC-V machine code

i implementation

I_lit: addi ip,ip,16
       sd   tos,0(dsp)
       ld   tos,-8(ip)
       addi dsp,dsp,-8
       ld   a4,0(ip)
       jr   a4

(+loop) implementation

c! implementation
dup implementation

C Code

I_lit:
  ip += 2;
  dsp[0]=tos;
  tos=ip[-8];
  dsp--;
  goto *ip[0];

Figure 2: Threaded-code representation of VM code. Each box is a machine word. Slanted light blue

indicates an immediate operand of the preceding VM instruction.

As a running example, we look at the VM code
in Fig. 2. The ûrst VM instruction in the example
is lit, which has an immediate operand 0. This
VM instruction pushes its immediate operand on
the data stack. It is represented by the address
of the machine code that implements it; in direct-
threaded code, every VM instruction is represented
by the address of the machine code that implements
it. In the case of lit, the implementation for RISC-
V (RV64G) is:

# //C code

addi ip,ip,16 # ip += 2;

sd tos,0(dsp) # dsp[0] = tos;

ld tos,-8(ip) # tos = ip[-1];

addi dsp,dsp,-8 # dsp--;

ld ca,0(ip) # ca = ip[0];

jr ca # goto *ca;

This code uses register names that reûect their
roles: ip is the VM instruction pointer; tos is the
top of the data stack; dsp is the data stack pointer;
ca is the code address (of the next VM instruction).

The slanted blue instructions are the payload
which perform the actual work of the VM instruc-
tion as far as code copying is concerned. Other op-
timizations reduce that part further; e.g. the ûrst
instruction updates IP, and the IP-update optimiza-
tion often optimizes it away.

The third instruction loads the immediate
operand (0) from the VM code by accessing it
through IP. This access of immediate operands and
control-ûow operations through IP is still in Gforth
with all optimizations applied, and is the diûerence
between an interpreter-based code-copying system
and a copy-and-patch system (Section 7.3).

The bottom two (black) instructions perform the
dispatch to the next VM instruction. The ûrst in-
struction loads the machine code address of the next

VM instruction, and the second instruction jumps
to it.

This assembly-language code can be generated
from the C code shown in the comments of the
assembly language. It uses the GNU C extension
<Labels as Values=,4 which allows jumping to the
address in ca with goto *ca5; this extension is also
supported by Clang, tcc, and icc.

The other VM instruction implementations have
the same pattern of payload, and dispatch. The last
VM instruction in our example, (+loop) is notable:
it is a VM-level conditional branch that branches
back to loophead (given as immediate operand) or
falls through to the next instruction. It is imple-
mented with the following code

addi ip,ip,16 # ip += 2;

...compute condition...

blt a5,zero,fallthrough # if (taken) {

ld ip, -8(ip) # ip = ip[-1];

ld ca, 0(ip) # ca = ip[0];

jr ca # goto *ca;

fallthrough: # }

ld ca,0(ip) # ca = ip[0];

jr ca # goto *ca;

If the conditional branch is taken, the new IP
is loaded from the immediate operand and a dis-
patch is performed. It is better to have separate
dispatches for the taken and the fallthrough cases
for branch prediction6 and because it allows to leave
away the fallthrough dispatch in code-copying.

4

https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

5The GCC maintainers call this a computed goto, al-
though it is more like a Fortran assigned goto.

6Even with history-based indirect-branch prediction,
branch predictors have an easier time if there are fewer tar-
gets for each indirect branch

32



Ertl, Paysan Code-copying compilation in production

lit addr
0
i addr
c! addr
dup addr
(+loop) addr
loophead

VM code
threaded code

VM instruction implementations
static machine code

i payload
rest of threaded-code dispatch

I_lit: addi ip,ip,16
       sd   tos,0(dsp)
       ld   tos,-8(ip)
       addi dsp,dsp,-8
K_lit: ld   a4,0(ip)
       jr   a4
J_Lit:

(+loop) payload
threaded-code dispatch

c! payload
threaded-code dispatch

dup payload
threaded-code dispatch

addi ip,ip,16
sd   tos,0(dsp)
ld   tos,-8(ip)
addi dsp,dsp,-8
i payload
c! payload
dup implementation
(+loop) payload
threaded-code dispatch

copied machine code

Figure 3: Code copying.

3.2 Code copying

Most VM instructions do not perform VM-level
control ûow, but just continue with the next VM
instruction. Code copying copies and concatenates
the machine code implementing the VM instruc-
tions, but in most cases without the dispatch code
at the end. Only taken branches (i.e. VM instruc-
tions that change IP to point to some other VM
instruction than the next one) need to perform a
dispatch.

Figure 3 shows this for our running example. The
VM code is conceptually the same as before, but for
each VM instruction the machine word now points
to the copied machine code instead of the original.

In particular, the copied code still has the IP,
which points to the threaded (VM) code, and it
accesses the immediate operands 0 and loophead

through it. The threaded code is also used on con-
trol ûow: the VM-level conditional branch (+loop)

is taken, loads the target threaded-code address
loophead into IP, and then performs a threaded-
code dispatch, which loads the code address at loop-
head, which points to the start of the concatenated
code. All control ûow in Gforth is performed with
threaded-code dispatches in this way.

The threaded-code slots for instructions other
than lit in this example are not accessed during
execution. Gforth keeps them around to simplify
the implementation.

At the end of the shown sequence the threaded-
code dispatch is copied. While this is necessary for
unconditional branches, it is not generally neces-
sary for conditional branches such as (+loop) (as
discussed above). However, the following VM in-
struction may make it necessary to perform a dis-
patch after the (+loop).

Code copying has also been called the memcpy()

method [RS96], selective inlining [PR98] and
(especially in Gforth) dynamic superinstructions
[EG03a].

3.3 Benefits over threaded code

The obvious beneût of code copying is that it
eliminates most threaded-code dispatches and re-
sults in straight-line execution of VM-level straight-
line code, avoiding the limit of typically one taken
branch per cycle. Another beneût is that the indi-
rect branches in most of the remaining dispatches
have only one target, vastly improving branch pre-
diction accuracy in CPUs without sophisticated
indirect-branch predictors, and still making life eas-
ier (and faster) for hardware with such branch pre-
dictors.

Another beneût is that code copying enables ad-
ditional optimizations that require code snippets
that are not represented as VM instructions (and
where introducing additional VM instructions with
threaded-code dispatch would make the optimiza-
tion unproûtable).

E.g., the IP update optimization [EP24] leaves
the IP update in front of most VM instruction im-
plementations away and replaces it with an IP up-
date by a larger amount for VM instructions that
actually use the IP.

As another example, stack caching as imple-
mented in Gforth inserts transitions between stack-
cache states where necessary. These transitions
do not have a VM instruction slot and therefore
can only be inserted when code-copying is enabled.
Gforth9s stack-caching implementation relies on be-
ing able to insert the transitions, so stack caching
is disabled when code copying is disabled [EG04a].
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3.4 When is code copying appropri-

ate?

The shorter the VM instruction implementations
are, the larger the beneût of code copying over
threaded code, because the overhead of threaded-
code dispatch is relatively larger then.

Conversely, with long VM instruction implemen-
tations as in Tcl, whose VM instructions <can av-
erage hundreds of [machine] instructions= [VA04]
the beneût is small, and often does not amortize
the cost of copying the code or of increased I-cache
misses [VA04].

Another aspect is that a compiler (to VM code)
that uses more VM instructions, with each doing
less, has more opportunities to optimize the VM
code. This has been done for CPython recently7.
With expensive VM instruction dispatch, splitting
an existing VM instruction into several simpler ones
increases the cost, and the opimization must be
very good and must be applicable often to amor-
tize this cost. With code-copying, the dispatch cost
approaches 0, and such transformations become less
of a gamble.

4 Implementation of code

copying

4.1 Code organization

Gforth has a big function engine() that contains
all the code snippets (implementations of all VM
instructions, and additional snippets used by opti-
mizations), and little else.

Every code snippet has a label in front of it and
behind it:

L_before:

code snippet in C;

L_after:

threaded-code dispatch;

You can see that more concretely in Fig. 3.
The label before it obviously points to the start

of the code snippet.
Getting the right label for the end of the code

snippet was initially straightforward (up to gcc-3.1),
but later required extra work. If the source code
falls through to the label (i.e., it does not end in an
unconditional branch), like for the payload of most
VM instructions in Gforth, with some extra help
(see Section 5.4), the following label points right
behind the code snippet, but if the code snippet
cannot reach the label (e.g., because it ends in an
unconditional branch, e.g, in a threaded code dis-
patch), gcc-3.2 and following have reordered code.

7https://github.com/faster-cpython/

We solved this problem by taking the values of all
the labels, sorting them, and searching for the ûrst
label behind the label at the start of the snippet.
This might include some unrelated code in cases
where the code snippet does not fall through to the
label, but in that case this is not a problem for
correctness (but possibly for relocatability, see Sec-
tion 4.5).

The function engine() has two code paths: the
ûrst just returns a table containing all the labels, for
use in threaded-code generation and code-copying;
the second starts the execution of the code by per-
forming a threaded-code dispatch.

If code copying is disabled,8 the threaded
code address for each VM instruction just points
to the implementation of that instruction inside
engine(), and every threaded-code dispatch jumps
around within this function.

With code copying, the ûrst threaded code dis-
patch in engine() jumps to the copy of the VM
instruction implementation and continues running
there, with control-ûow changes by performing a
threaded-code dispatch.

4.2 Why does it work?

Why can we concatenate the code snippets pro-
duced in the way described above, and get code
that works?

In particular, won9t the register allocator have
diûerent register allocations for the diûerent code
snippets? Actually, at the start and, for fallthrough
snippets, the end of the snippet, the register allo-
cation has to be the same as at the start of every
other snippet, because the compiler has to consider
the possibility that every goto * jumps to every la-
bel whose address is taken. And the addresses of all
labels before and after all code snippets are taken
(to determine the code snippet address and length).

The code snippets that do not fall through end
in a goto * in Gforth. And the register allocation
at the goto * has to be compatible with that of all
the labels whose address is taken, or it would not
work even in ordinary use.

More precisely, engine() is compiled separately
from the code dealing with the threaded code, so
the C compiler has to assume that every goto * in
engine() can jump to any label whose address is
taken.

Therefore, at a goto * all variables are alive (i.e.,
read before being overwritten) that are alive at any
label whose address is taken, and each variable has
to be in the same location at all those labels and
all the instances of goto *. The code snippets that
fall through to their second label are followed by a
threaded-code dispatch:

8Gforth option --no-dynamic.
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ca = ip[0];

goto *ca;

so at the label between the code snippet and the
dispatch, all the same variables are alive as at the
goto *, except possibly ca, but that is not alive
before the threaded-code dispatch, either. These
variables also all have to reside at the same loca-
tions, because the goto * could jump to them.

4.3 Fallback

There are cases where certain code snippets cannot
be copied (usually because they are not relocatable,
see Section 4.5). How does Gforth deal with that?

Gforth falls back to plain threaded code in these
cases: Append a threaded-code dispatch to the pre-
vious copied code snippet (unless the code snip-
pet already ends with a threaded-code dispatch),
and let the machine word representing the current
VM instruction point to the original implementa-
tion of the VM instruction (inside engine()) rather
than a copy). At run-time, the code performs the
threaded-code dispatch, which then jumps to the
original; that ends in another threaded-code dis-
patch, which may jump to code coming out of code-
copying, or to another original implementation.

If other optimizations are active, the preparation
for the fallback may require appending additional
code. E.g., the IP needs to be up-to-date before
the threaded-code dispatch, so in the presence of IP-
update optimization, an IP update may be inserted
before the threaded-code dispatch. Also, in Gforth
the plain threaded code always expects the stack
in the canonical state, so in the presence of stack
caching, a transition from the current stack state to
the canonical stack state may need to be inserted
before the threaded-code dispatch.

Gforth may also ûnd that it cannot copy the
threaded-code dispatch. In that case it disables
code copying completely and falls back to threaded
code not just for individual VM instructions, but
for all of them.

The option to fall back to threaded code has
helped in various cases where things did not work
according to our expectations (e.g., see Section 5.4).
It means we always have a way to make Gforth
work, albeit not as fast as we would like.

4.4 Instruction sets

Code copying is based on the assumption that the
code snippets are independent and concatenable.
At the instruction-set level this is satisûed if indi-
vidual instructions are independent and concaten-
able. Some instruction sets have restrictions be-
tween groups of instructions. In this case a code

snippet must not contain a partial group, i.e., there
must not be a label within a group.

There are a few cases of such instruction-set re-
strictions:

Branch delay slots This is a misfeature of some
early RISC architectures, in particular, HPPA,
MIPS and SPARC: The branch instruction per-
forms the instruction behind it before contin-
uing at the target. This does not work with
code copying if the compiler puts a label be-
tween the branch and the instruction behind
it. However, the compilers we have used (most
recently gcc-14.2) do not do that.

Load delay slots This is a restriction of the
MIPS I instruction set (eliminated in MIPS II).
The instruction behind a load instruction is not
allowed to read the register written by the load
instruction. MIPS I also has some placement
restrictions on reading and writing the hi and
lo registers. Having labels right after the load
or in the shadow of hi/lo reads can result in
violating these restrictions in code copying. We
have not tested if compilers actually place la-
bels in a way that would lead to such violations.
Instead, these concerns along with the relo-
catability problems (Section 4.5) and the lack
of relevance of MIPS in Unix systems around
2003 were the reasons why we just conûgured
Gforth to fall back to threaded code on MIPS
(including the 64-bit MIPS port).

Instruction groups This is an IA-64 (aka Ita-
nium processor family) property. Instructions
within a group have restrictions on register us-
age that are intended to ensure that the in-
structions can be performed in one cycle with-
out register renaming.9 If a compiler put a
label inside a group, code copying could vio-
late these restrictions. Apparently the compil-
ers we used (gcc-3.3, gcc-4.1.3, gcc-4.3.2) put
stops (group boundaries) at labels, because in
our testing IA-64 has always worked ûne. If
they did not, an easy ûx would be to insert the
stops using asm statements or at the assembly-
language stage.

Based on the experiences with branch delay slots
and instruction groups, it seems that gcc develop-
ers also avoid splitting groups of instructions with
interdependencies by inserting a label inside these
groups, but if these instruction sets still were im-
portant targets, that might change.

9Groups are often confused with bundles, which are IA-
64’s encoding of three instructions in 128 bits. By contrast,
groups can be arbitrarily long, and can start and end some-
where in the middle of a bundle.
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The problematic restrictions/features have not
spread to newer architectures and all the archi-
tectures with these restrictions in general-purpose
computers have been canceled in the meantime,
while older or contemporary architectures without
these restrictions thrive. So apparently the idea
of independent, concatenable instructions has some
merit, and we can expect that future instruction
sets will also exhibit this property and thus sup-
port code copying.

4.5 Relocatability

A code snippet must be relocatable in order to be
used in code copying, i.e., it must behave the same
way in the original place and when copied.

Non-relocatable code

The main problems here are references to addresses:
The code in the snippet must refer to addresses in-
side the snippet in a PC-relative way, and must
not refer to addresses outside the snippet in a PC-
relative way. Most architectures refer to other code
addresses in a PC-relative way, so the most com-
mon reason for non-relocatability is when the VM
instruction implementation performs a call to some
function (e.g., for performing I/O).

Accesses to global constants or to global vari-
ables in a PC-relative way can also cause non-
relocatability. Gforth avoids global variables for
that reason and because of multi-threading; it stores
some formerly global variables in a struct whose ad-
dress is stored in a local variable inside engine().
However, computing the FP negation and the FP
absolute value implicitly involve a constant that re-
sides in memory on AMD64 (with SSE2 FP), mak-
ing the implementations of these VM instructions
(fnegate and fabs) non-relocatable on this archi-
tecture.

The pointer-to-struct approach could also be used
for invoking functions without making the calling
code non-relocatable, but for now we have not done
that.

Note that asking the C compiler for position-
independent code does not mean that individual
code snippets are relocatable, even though the bi-
nary as a whole is, because position-independent
code may refer to code or data outside the code
snippet in a PC-relative way (and usually does),
while a relocatable code snippet must not do this.

Determining relocatability

How do we ûnd out if a code snippet is relocatable
or not? The implementations of the VM instruc-
tions actually look as follows:

L_skip:

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

L_before:

code snippet in C

L_after:

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

threaded-code dispatch

We compile engine() with these pieces to as-
sembly language. Then we assemble the result
twice: Once with SKIP4 deûned as empty string,
so the SKIP4s assemble to nothing, and the re-
sult is as discussed earlier; and once with SKIP4

deûned as .skip 4, and with engine deûned as
engine2, so as a result the object ûle contains a
function engine2() that has 16 bytes of padding
before and after each code snippet.10 We link both
object ûles into the ûnal executable. The addresses
of the L_skip labels are taken and passed outside
engine(), so gcc cannot optimize the initial skip
away as dead code, and also because that usually is
the next label after a threaded-code dispatch.

We now have a function engine() without the
skips before and after the code snippets, and a func-
tion engine2() that has 16-byte skips before and
after each code snippet. We extract the labels from
each of the functions, and then compare the code
snippets: If a code snippet from engine() contains
exactly the same bytes as the corresponding code
snippet from engine2(), then the code snippet is
relocatable, otherwise it is not.

How does this work? If code from inside the code
snippet references a code or data address outside
the code snippet through a PC-relative address, the
oûset of the relative address will be diûerent be-
tween engine() and engine2(), because the tar-
get label will be farther away in engine2() thanks
to the skips. If there is an absolute reference (e.g.,
MIPS j instruction) to inside the code snippet, it
will be diûerent between engine() and engine2(),
because the respective targets are at diûerent ad-
dresses.

Even if the code snippet ends in an unconditional
branch and the C compiler puts some other code
behind that unconditional branch,11 this scheme
works: If the two code snippets compare equal, the

10In earlier times we compiled twice rather than assem-
bling twice, but compiling once is faster, and we do not need
to worry if the two compilation runs introduce unintended
differences in addition to the intended ones.

11We have not seen such an occurence yet.
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code is relocatable. When used in a code-copying
system, the code snippet may have some unused
code behind the unconditional jump, but the gen-
erated code is still correct.

The reason for skipping 16 bytes is that this is a
common code-alignment value, so the skips would
not result in altered alignment (these days we ask
the compiler to align to 1-byte boundaries, so skip-
ping less might be suûcient). The reason for per-
forming the 16-byte skip as 4 4-byte skips is that for
some targets gcc counts the number of instructions
in asm statements, assumes that each instruction
takes at most 4 bytes, and generates code that re-
lies on this assumption.

The absolute target addresses for the MIPS j

and jal instructions have a catch: They work only
for targets in the same 256MB segment of the ad-
dress space. When we last looked, the functions
engine() and engine2() were linked in the same
256MB segment as the functions called by some of
the code snippets, and the code snippets would have
been classiûed as relocatable. However, they were
only relocatable within this 256MB segment. This
is another reason why we disabled code copying for
MIPS. An alternative would have been to allocate
the memory for the copied code in the same 256MB
segment as the original. Fortunately, among the ar-
chitectures we have looked at, only MIPS has this
property.

5 Compiler issues

In the previous section we have already mentioned
a few caveats about how compilers have interfered
with our initial assumptions about the generated
code, and what we do about that. This section
discusses additional issues.

We had quite a few problems with various gcc
versions in the 2000s, and for some we found ways
to deal with them, while some others were eventu-
ally ûxed (after reappearing for several years). Also,
the rethoric about undeûned behaviour started at
around that time and has spread and become more
aggressive since then,12, so at some point we ex-
pected to have to switch from using GNU C to
assembly language as a more reliable foundation
at some point [Ert14], essentially switching to a
conventional compiler. But this has not happened
(yet?), and actually, in the 2010s and 2020s only
few new problems have appeared, and we found
ways to deal with them. So GNU C seems to be a
relatively stable foundation after all, once one has
implemented various workarounds.

12http://blog.llvm.org/2011/05/
what-every-c-programmer-should-know.html

5.1 Code reordering

When we started, gcc arranged the basic blocks in
source order. This changed with gcc-3.2. This has
an eûect on how we ûnd the next label (Section 4.1).
But we also saw cases where the compiler moved
basic blocks from between L_before and L_after

to outside these labels, which caused problems.
To avoid such problems, we tried to have only

straight-line code in the VM instruction imple-
mentations. We extracted loops and most if-
statements into functions that are compiled sepa-
rately, and the VM instruction implementation only
contains a call to this function. This costs a little
performance (from the function call as well as turn-
ing the VM instruction implementation into non-
relocatable code on most architectures), but fortu-
nately the VM instruction aûected by this are exe-
cuted relatively rarely.

However, conditional VM branches are executed
frequently, and in the ideal case they contain a con-
ditional branch, in the following form (also seen for
(+loop) in Section 3):

... skips ...

L_before:

... stack handling etc. ...

if (VM_branch_taken)

ip = ip[-1]; /*VM-branch target*/

threaded-code dispatch;

L_after:

... skips ...

threaded-code dispatch;

Ideally such VM-instruction implementations are
compiled such that the basic blocks in the machine
code are in the same order as in the source code,
so that the code controled by the if is between
L_before and L_after, and the second threaded-
code dispatch can be left away by code-copying in
the usual case. For now, gcc does it that way for our
code. But if gcc ever started changing this, a possi-
ble way to steer it back on the right path may be to
use __builtin_expect(VM_branch_taken,1) in-
stead of just VM_branch_taken.

5.2 Code alignment

Compilers insert padding to align branch targets
to instruction-fetch boundaries or cache-line bound-
aries. In particular, they do this for branch targets
behind unconditional branches and loop heads.

When code copying, the padding inserted
for the original code is often inappropriate
for the target code. Therefore, we sup-
press this padding by compiling engine() with
the options -falign-labels=1 -falign-loops=1
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-falign-jumps=1.
Instead, our code-copying implementation per-

forms its own alignment (but on 2007-era proces-
sors where we measured the eûects, the eûects were
in the noise).

5.3 Code deduplication

Starting with gcc-3.0, gcc started to compile all the
goto * instances to an unconditional jump to one
instance of an indirect branch. The reason for this
probably was to reduce the control-ûow edges in the
data-ûow analysis, for m goto * and n labels from
nm to n + m.

In a number of gcc versions (up to the early gcc-
4.x releases), gcc then did not eliminate the un-
conditional jump afterwards, with some versions
eliminating them and some versions regressing, but
eventually the gcc maintainers managed to make
the unconditional-branch elimination stick, for our
code.

So if that is a solved problem, why do we mention
it here? We occasionally see this problem reappear
in some form, so it9s not completely gone.

E.g., when we managed to extend stack-caching
support on AMD64 to three registers, we found that
on AMD64 gcc compiled the goto * to an uncon-
ditional branch to common code that contains a lot
of register shuÿing (with no overall eûect) and û-
nally the indirect branch. Apparently the register
shuÿing made the common code so long that the
branch-elimination heuristic decided not to elimi-
nate the branch.

Fortunately, we found out that the register
shuÿing (and, consequently, the unconditional
branch) go away with the compilation option
-fno-tree-vectorize. Apparently without this
option gcc tries to vectorize loads and stores of ad-
jacent values, and is less precise in the data ûow
analysis for that than for individual values, leading
to the register shuÿing.

For the problems in the gcc-3.x and 4.x era,
Gforth contains a workaround that has just one
threaded-code dispatch and jumps there from all
the VM instruction implementations. Gforth has
labels before and after this dispatch, and because
there is only one, gcc does not deduplicate it; this
allows Gforth to use it as a code snippet that
is appended whenever a threaded-code dispatch is
needed.

In order to work with this workaround and still
be relocatable, we implemented conditional VM
branches to just set the IP on a taken branch,
and then continue through L_after to the dispatch
code. This results in worse code than we would
have liked, but it was the best that was possible on
these compiler versions. This approach remains an
option when building Gforth,

5.4 Code duplication

On our ûrst encounter with gcc-7, we found that the
generated code looked as a straightforward compiler
would generate for:

L_skip:

... skipping ...

code snippet in C;

threaded-code dispatch;

L_before:

code snippet in C;

threaded-code dispatch;

L_after:

threaded-code dispatch;

I.e., gcc-7 duplicated code reached by jumping
to a label and the same code being reached in a
straight-line way. This may be a useful optimiza-
tion, but it means that our code snippets now con-
tain the dispatch code, which is contrary to our in-
tentions.

We found the following workaround: In order to
convince gcc that this code duplication does not pay
oû, after each label we insert 8 asm statements, each
containing a comment with a text unique to that
label (so gcc hopefully will not try to deduplicate
the code). Currently this is enough to convince gcc
to avoid the code duplication

5.5 Register allocation

Virtual machines have a number of <registers=,
which are implemented in C code as C (local) vari-
ables. At least for the frequently-used variables, it
would help performance if they were allocated to
real-machine registers.

Up to and including gcc-9, we explicitly assigned
registers to several of these variables on many plat-
forms with GNU C9s feature <Explicit Register
Variables=. In gcc-10 and later, disabling the ex-
plicit register variables produced better results than
enabling them.

With either approach, we have the following
problem: In the Gforth engine, gcc only used
callee-saved registers for these variables. With ex-
plicit register variables, because gcc does not ac-
cept caller-saved registers for those. But if left to
itself, gcc does not use caller-saved variables, either,
because engine() contains about 100 VM instruc-
tion implementations that perform calls, and these
calls apparently cause the compiler to avoid using
caller-saved registers for these variables, especially
for those that are used in < 100 VM instructions,
such as the return-stack pointer of Gforth. A prob-
lem here is that gcc does not know that VM in-
structions that access the return stack are used fre-
quently, while VM instructions that perform calls
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tend to be used rarely. This is a problem even for
architectures like Alpha that have a lot of registers
in principle, but a calling convention with relatively
few callee-saved registers.

For being able to use additional registers for stack
caching without spilling other VM registers, we
use the following observation: All VM instruction
implementations that contain a call only use the
canonical state with one stack item in a register,
due to non-relocatability. So additional stack cache
registers are dead at the end of these VM instruc-
tion implementations, and there is no reason to pre-
serve these registers across the calls. But how do
we tell gcc about that?

L_skip:

... skipping ...

L_before:

code snippet containing a call;

asm("":"=X"(spb));

asm("":"=X"(spc));

L_after:

threaded-code dispatch;

The empty asm statements right before L_after

claim to overwrite spb and sbc (the variables hold-
ing the additional stack-cache items in some stack-
cache states). Therefore, these variables are dead
at the call and do not need to be preserved. This
means that this VM instruction implementation is
no hindrance to allocating spb and spc in a caller-
saved register. And indeed, one of these variables
is allocated by gcc in a caller-saved register.

Another way to inûuence the register allocator
that we have not used is the GNU C extension <La-
bel Attributes= (available since gcc-5). We can de-
clare the VM instruction implementations with calls
as being cold, and/or declare frequently-used VM
instruction implementations to be hot by following
the label with an attribute:

L_skip:

... skipping ...

L_before: __attribute__((cold));

code snippet containing a call;

L_after:

threaded-code dispatch;

With that, the register allocator is hopefully more
willing to use caller-saved registers for local vari-
ables of the VM.

5.6 Cache consistency

Many architectures do not guarantee cache con-
sistency between data and instruction caches, and
require a special piece of code between generat-

ing code and executing code; this incantation typi-
cally consists of a few lines of architecture-speciûc
(or, on some architectures worse, implementation-
speciûc or OS-speciûc) code, and for a long time
has been the only non-portable part of Gforth9s
code copying implementation. Gcc-4.3 introduced
__builtin___clear_cache(), which would elim-
inate this last piece of non-portability. We use
__builtin___clear_cache() on RISC-V.

Unfortunately, __builtin___clear_cache() is
not implemented correctly on at least Pow-
erPC64.13 We have switched Gforth back to us-
ing architecture-speciûc implementations of this
functionality (except on RISC-V). When imple-
menting your own code-copying compiler, check if
__builtin___clear_cache() is compiled to non-
empty code on each architecture that requires spe-
cial code to make the caches consistent. If it com-
piles to non-empty code, that code will hopefully
be correct.

Another problem with such architectures is multi-
threading: The code-generating thread must ensure
that the D-cache lines are written to a common
memory, and then the code-executing threads must
invalidate these regions in the I-cache (to get rid of
stale I-cache lines); due to prefetching and branch
prediction, this may even be necessary if code in the
address range has never been executed.

Until now we have ignored this problem, and re-
lied on our luck. Typically Gforth programs only
start subthreads after ûnishing compiling the source
code (and thus code generation), which may explain
why we have not seen any problems from that. A
system with on-demand code generation (the nar-
row meaning of JIT) may be more likely to en-
counter such problems, however.

5.7 Spectre

GCC oûers mitigations against Spectre
v2 [KHF+19]. While all of these miti-
gations are expensive, because they dis-
able indirect-branch prediction, the option
-mindirect-branch=thunk-inline is less expen-
sive than -mindirect-branch=thunk, because the
latter makes the code snippets non-relocatable, so
every VM instruction performs an indirect branch,
while with the former option the relocatability of
the code snippets is not aûected, resulting in fewer
indirect branches and therefore less slowdown.

On a Ryzen 3900X, we see slow-
downs by a factor of 2.137.6 from us-
ing -mindirect-branch=thunk-inline and
slowdown factors of 7.5318.1 from using
-mindirect-branch=thunk.

However, if you want to implement your pro-
gramming language with Spectre mitigations, you

13https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93811
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will prefer approaches such as copy-and-patch com-
pilation that avoid performing so many indirect
branches. You will also want to use mitigations
against other Spectre vulnerabilities (e.g., specula-
tive load hardening [ZBC+23] against Spectre v1),
which will introduce additional slowdowns for any
approach, but unfortunately, these other mitiga-
tions require more work than just setting a C com-
piler ûag.

5.8 Control-flow protection

There are exploit techniques such as return-oriented
and jump-oriented programming that work by re-
turning or jumping to arbitrary code. To make
it more diûcult to use these techniques, archi-
tectures and compilers oûer ways to check that
branches and returns only jump to targets that
the compiler had in mind. E.g., gcc with the op-
tion -fcf-protection=full inserts an endbr64 in-
struction at every indirect-branch target (i.e., every
label in engine()), and the CPU can be told to re-
port an error on an indirect branch to some other
code. Endbr64 is an AMD64 instruction, some
other architectures have similar features.

This works with code copying: It copies the
endbr64 instruction to those places that the dis-
patch code will later indirect-branch to (and to ad-
ditional places).

We use -fcf-protection=none in Gforth, how-
ever, because Gforth oûers enough gadgets14 al-
ready at the intended targets of indirect branches:
All the VM instructios; moreover, Gforth and its
VM is a low-level language that allows arbitrary
memory access within the process. So a Gforth
program that is exposed to untrusted input has to
successfully defend against an attacker at the front
line (source-level bounds checks etc.) and cannot
make life harder for the attacker who has breached
the front-line defense.

However, if your language is better
suited to defense-in-depth, you can enable
-fcf-protection=full, and they will work with
code copying. This feature may cost a little
performance, though: All the endbr64 instructions
need to be decoded and executed. In a small
experiment with Gforth on a Ryzen 8700G (Zen4),
we saw an increase in instruction count by a factor
1.45 and an increase in cycle count by a factor 1.04
from -fcf-protection=full. Narrower processors
may see a bigger slowdown (the instructions per
cycle on Zen4 increased from 3.83 to 5.34). VM
implementations with more machine instructions
per VM instruction will see a smaller eûect.

14In the context of return-oriented and jump-oriented pro-
gramming, a gadget is a machine-code sequence that an at-
tacker may want to return/jump to.

5.9 Clang

Clang supports <Labels as Values=, and Gforth is
built with clang on platforms where GCC is not
available. However, using Clang poses a number of
problems:

" Clang wants to understand the assembly lan-
guage in asm statements, and stops compiling
when it sees asm("SKIP4"). One can work
around that, and that is done in the ports that
need clang, but we have not done that for the
experiments on Debian Linux in the following.

" Clang takes much longer than gcc to com-
pile Gforth9s engine() and also needs more
memory. As an example, for gforth-itc (an
indirect-threaded-code Gforth without code
copying nor other optimizations, and there-
fore without SKIP4), on a Ryzen 5800X gcc-
12.2 takes 3s and 346MB to compile engine(),
while clang-14.0.6 takes 699s and 5603MB. For
engine() for gforth-fast (with all optimiza-
tions enabled), clang takes 3399s and 18264MB
before it stops compiling because of SKIP4 (gcc
takes 26s and 1804MB).

" Clang generates a lot of register and memory
shuÿing code, similar to what we have seen
with gcc-3.0. As a result, runnung the small
benchmarks on Clang-compiled gforth-itc

executes 6.4 times more AMD64 instructions
than on GCC-compiled gforth-itc and con-
sumes 4.2 times more Ryzen 5800X cycles.

As a result, Gforth selects GCC whenever it can.
We expect that the clang compilation speed will be
a problem for other code-copying compilers. The
bad code generation may be less pronounced in lan-
guage implementations that rely less on copy prop-
agation than Gforth. Clang may be more viable
when using tail calls instead of using one function
and <Labels as Values= (see Section 7.1).

6 OS issues

Over the years operating systems have restricted
executing dynamically-generated code more and
more. In the beginning, all memory was allocated
with read, write, and execute (RWX) permissions;
later, malloc() only allocated RW memory, and
one has to use mmap() to get RWX memory.

Recently, some operating systems (in partcu-
lar MacOS on Apple silicon) do not serve mmap()

calls that ask for RWX memory (this restriction is
also known as W^X). This is a problem for all sys-
tems with run-time code generation, not just code-
copying compilers, but, e.g., Java JITs as well. For
a single-threaded language implementation, one can

40



Ertl, Paysan Code-copying compilation in production

mprotect() the memory to W when generating the
code, and to X when executing it, but that does
not work for multi-threaded code, unless you want
to start a new page whenever you generate a new
piece of code.

MacOS provides a MacOS-speciûc API for JIT
compilers that supports switching the memory into
W in the code-generating thread and keeping it X
in the other threads, and Bernd Paysan has actually
invested the time to use this API.

Several of the BSDs also has W^X by default, but
allows to mark binaries such that RWX works. The
command for marking the binary is short, but spe-
ciûc to the BSD variant.15

An approach that may work without special APIs
is to have the code generation in one process and
the execution in a diûerent process, both mapping
the same memory, but with diûerent permissions.
Another option may be to map the same memory
within one process twice, at one address range with
W permission, and at the other address range with
X permission. We have not tried either approach.

If all else fails or you don9t want to jump through
the hoops that these operating systems put up,
code-copying based on threaded code always al-
lows you to fall back to plain threaded code, which
works ûne on operating systems with the W^X re-
striction. E.g., Gforth-0.7 (which was not speciû-
cally designed for this circumstance) automatically
falls back to plain threaded code on MacOS on
Apple silicon: the mmap() call for allocating the
code memory fails, so Gforth-0.7 falls back to using
malloc(), and because that does not produce exe-
cutable memory on modern OSs, Gforth-0.7 turns
oû dynamic code generation.

7 Alternative approaches

In this section we describe approaches that are in-
teresting but that are not implemented in produc-
tion Gforth.

7.1 Tail calls

Instead of putting all VM-instruction implementa-
tions in one function and using goto * for threaded-
code dispatch, one can also put each VM instruc-
tion implementation in a separate function and use
optimized tail-calls for threaded-code dispatch, as
follows:

15https://www.reddit.com/r/BSD/comments/10isrl3/

notes_about_mmap_mprotect_and_wx_on_different_bsd/

typedef void (*vm_inst)(void **ip,

long *dsp, long tos);

void lit(void **ip, long *dsp, long tos)

{

... payload including ip update ...;

(*(((vm_inst *)ip)[0]))(ip,dsp,tos);

}

The last line of the function performs the
threaded-code dispatch. The tail-call must be op-
timized into a jump, otherwise the C stack grows
and eventually overûows. When we ûrst considered
this approach [Ert95], GCC did not tail-call opti-
mize such code, but in the meantime it does, as
does Clang [XK21]; Clang even provides a way to
require that a call is tail-call-optimized, and will
report an error if it cannot meet this requirement.

The VM registers are passed as parameters, at
least as long as the calling convention supports pass-
ing them in machine registers. With gcc, additional
VM registers could be stored in global explicit reg-
ister variables; on AMD64 this results in 12 general-
purpose and 8 ûoating-point registers available for
VM registers. Clang does not support explicit reg-
ister variables, but it supports using a calling con-
vention for these functions and calls that uses as
many registers as possible for parameter-passing.

So for dealing with VM registers eûciently, one
has to pass VM-registers in parameters or keep
them in global register variables with compiler-
dependent and ABI-dependent code, but that is a
relatively small eûort.

With the tail-calling approach, there is a ûxed al-
location of VM registers to machine registers, either
coming from the position in the parameter list, or
from the explicit register allocation.

We expect that the VM instruction implementa-
tions can be compiled faster and with less memory
with the tail-calling approach, because the compiler
will hopefully not try to perform data-ûow analysis
between the functions, while it tries to do it when
the implementations are all contained in one func-
tion. We can then squander the compilation speed
gain on introducing more code snippets, for vari-
ous optimization purposes (Xu and Kjolstad report
using 98831 code snippets [XK21]).

Another beneût is that we should see no
or little of the register-and-memory shuÿing
that we see with Clang, or with gcc without
-fno-tree-vectorize.

So far you have only seen how tail calls can be
used to implement threaded code. How can it be
used for code-copying compilation?

In order to do that, we need a way to get rid of
the dispatch part of the implementation. Unfortu-
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nately, compilers tend to mix the instructions from
the payload part with those from the dispatch part;
just inserting a label between them will not work,
because there is nothing that jumps to this label.
Maybe an asm statement can be made to act as a
barrier, but preliminary experiments failed to pro-
duce satisfying results.

One way that may be more promising is to have,
in addition to functions that end in a threaded-code
dispatch (to have a fallback option), variants in-
tended only for code copying that end in a direct
[XK21]) or indirect tail-call without threaded-code
dispatch. On many architectures this is just one in-
struction, that must be last in the function. How-
ever, there are exceptions: Some architectures have
delayed branches (HPPA, MIPS, SPARC); some
architectures require two instructions for indirect
branches (PowerPC, IA-64). In some programming
models, a direct jump to a function is expressed as
an indirect jump to a target loaded from the global
oûset table (GOT), and as a result the direct jump
also is expressed with more than one instruction.

Once we have solved the problem of keeping the
payload separate from the tail call, how do we know
where the tail call starts so that we can use the
code between the start of the function and this in-
struction as code snippet? Xu and Kjolstad extract
the function size (and the code) from the object
ûle (see Section 7.2), and apparently use their own
architecture-speciûc knowledge about the size of the
last instruction to determine where it starts. A way
to determine the size of this last instruction may be
to have a function that performs only this tail-call,
and look at its size.

7.2 Snippets from object files

Gforth extracts code snipets from the executable
at run-time and has some startup overhead while
it examines all the code snippets for relocatability
and performs its table setup.

An alternative is to extract code snippets from
object ûles [NHCL98, XK21] at system build time
using the Binary File Descriptor library (GNU
BFD). One advantage of this approach is that the
object ûle contains additional information, such as
the function size, or linkage information for symbols
external to the object ûle.

7.3 Copy-and-patch compilation

Gforth accesses immediate operands and control-
ûow information through IP. This requires a register
for IP, results in less eûcient accesses to immediate
operands and less eûcient control ûow than with
ordinary compilers, and requires keeping the VM
code around.

An alternative is to have code snippets that con-
tain dummy immediate arguments and perform
control ûow directly to dummy targets, and then
patch the constants or target addresses in these
code snippets with the actual values, resulting in
copy-and-patch compilation.

One approach for copy-and-patch compilation
has been based on using the linkage information
in object ûles [NHCL98, TCL+00, XK21]. Refer-
ences to external symbols are used for patchable
immediate operands and patchable control-ûow tar-
gets. The linkage information describes where to
patch and how to patch (e.g., absolute or rela-
tive address). This requires some architecture/ABI-
speciûc work, but ABIs have a ûnite number of relo-
cation types (e.g., 52 in the AMD64 ABI [LMG+])
and only a few are actually used in the code snip-
pets.

However, by refering to an external symbol the
copy-and-patch compiler usually cannot patch the
immediate operand of instructions like RISC-V9s
addi. The external symbol is a 64-bit (or 32-bit)
value, while the immediate operand of addi is 12
bits long, so the addition of a constant (whatever
its size) is compiled to several instructions.

Another approach is to start with code snippets
delimited by labels in one C function, like Gforth9s
code copying uses, but perform patching in addition
[VA04, EG04b].

We implemented copy-and-patch compilation for
Gforth in a prototype for IA-32 and PowerPC us-
ing the latter approach [EG04b]. This work was
based on Gforth9s approach of extracting code snip-
pets from the executable at system startup time.
The engine() function was compiled thrice, twice
with the same immediate arguments, and once with
diûerent immediate arguments. The ûrst two ver-
sions were compared to determine relocatability, the
third version was compared to ûnd out the place-
holders of the immediate arguments.

This approach can make use of the RISC-V addi

instruction, but needs to fall back to code that uses
several instructions when the immediate operand
becomes too large. It needs quite a bit of knowl-
edge about the instruction encodings, in particular,
the sizes of the immediate-operand ûelds. We con-
sidered determining the encoding and size by vary-
ing the immediate operands a lot more, but did not
implement that idea; dealing with each architecture
manually is probably less work.

We originally intended to turn this copy-and-
patch compiler into a production engine for Gforth,
but in those years several GCC releases resulted
in falling back to threaded code, so the copy-and-
patch approach looked too brittle, and we let it bit-
rot. Later, the rethoric by the advocates of C code
without undeûned behaviour kept the distrust in
GCC high. If we had continued to maintain this
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engine, maybe we could now report on its success
and the hurdles we had to overcome. Or maybe it
would have been a bridge to far.

8 Related Work

GCC-2.0 (released February 1992) introduced <La-
bels as Values=, which not only proved useful for
implementing threaded code (we started the Gforth
project[Ert93] in July 1992), but also for compiling
by copying compiler-generated code snippets be-
tween two labels, with all the code snippets being
within a function. This method was ûrst outlined
by Rossi and Sivalingam [RS96, Section 2.5], who
refer to an unpublished discussion between Xavier
Leroy and Kenneth Oksanen. Piumarta and Ric-
cardi provided a more elaborate treatment [PR98],
with deduplication of code sequences.

Ertl and Gregg implemented code-copying in
Gforth, and in the beginning the main beneût
was in indirect branch prediction accuracy [EG03a,
EG03b, CEG07]; it turned out that leaving away
deduplication (or conversely, introducing replica-
tion, as we framed it) helped the branch predictors
at the time. Indirect branch predictors have im-
proved a lot in general-purpose processors [RSS15],
but code copying still provides a good speedup.16

Once you have code copying, you can eliminate
instruction-pointer (IP) updates, either by leaving
away the unneeded VM instruction slots [PR98], or
by replacing several IP updates with a combined
one [EP24]. While IP updates play a minor role for
performance on CPUs from the 2000s, they can be
the decisive bottleneck on loop-dominated bench-
marks in the 2020s.

Another optimization that was facilitated by code
copying is multi-state stack caching [Ert95, EG04a,
EG05].

Tempo is a partial evaluator that uses code copy-
ing and patching by extracting information from
object ûles [NHCL98]; Tempo was later used to spe-
cialize an interpreter into a compiler [TCL+00].

Iliasov [Ili03] describes a copy-and-patch compiler
with a minimal patching component: Only literals
need to be patched; control ûow is performed by
performing indirect jumps to addresses provided as
literals.

QEMU is a full-system emulator. It is a pro-
duction system with a long history, and has many
more users than Gforth. QEMU can emulate ma-
chines with a diûerent instruction set than the host
machine. It uses dynamic translation techniques for
that, originally implemented in its Dyngen compo-
nent [Bel05] using code-copying and patching, sim-
ilar to what we described in Section 7.2 and 7.3.

16See Section 2.1 and http://www.complang.tuwien.ac.at/
anton/interpreter-branch-pred.txt.

But Dyngen uses ordinary functions, not tail-calling
functions, and has to get rid of the function pro-
logue and epilogue. Dyngen is gcc-3.x-speciûc, and
it apparently was too diûcult to adapt it to newer
gcc versions or other compilers, so it was replaced
with TCG in QEMU-0.10.0 released in 2009. TCG
is based on QOP by Paul Brook, who described it
as <Hand written code generator=17, so TCG prob-
ably is not based on copying and pasting compiler-
generated code.

In Gforth we have dealt with changes in GCC by
ûnding workarounds, or, for versions where we were
not successful, by falling back to threaded code.
Another approach is to actually deûne the proper-
ties that a compiler9s code generation should have
to support code copying; then modify a compiler to
provide those properties (when asked for it), and
report an error if it fails to provide the properties.
This approach has been explored by Prokopski and
Verbrugge [PV07, PV08], but their patches have not
been integrated into GCC.

Several code-copying JavaVM implementations
have been implemented, among them SableVM
[GH03] and the Cacao interpreter [ETK06]. A par-
ticular challenge solved by these implementations
was quickening of VM instructions, where VM in-
structions rewrite themselves into faster code on
ûrst execution. SableVM stopped being maintained
after the research project ended (last release 2007).
The Cacao interpreter bit-rotted while the main
thrust of Cacao continued to use conventional code
generation technology.

Maxine is a Java VM implementation with two-
level compilation (baseline and optimizing com-
piler), where the baseline compiler is a copy-and-
patch compiler that uses templates written in Java
and where the code is generated by the optimizing
compiler (which uses conventional compiler tech-
niques) or by HotSpot [WHV+13].

Xu and Kjolstad implement two copy-and-patch
compilers: One that directly compiles from the ab-
stract syntax tree (AST) without going through a
VM and one for WebAssembly. Their technique
works by having each code snippet (called stencil in
the paper) in a tail-calling function with references
to external symbols as placeholders for patching,
and extracting the code snippets from object ûles.
They use 1666 code snippets for the WebAssem-
bly compiler, and 98831 code snippets for the AST
compiler; the latter is notable, because it is beyond
practical for the technique where all code snippets
are in one function.

17https://qemu-devel.nongnu.narkive.com/bCtjCaPs/
hand-written-code-generator-2
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9 Conclusion

Code-copying compilers make retargeting of the
compiler much easier by using code snippets com-
ing from a diûerent compiler. Gforth demonstrates
that code-copying without patching can produce
code with similar performance as a compiler with
a hand-written architecture-speciûc code generator.
Gforth has used code copying since 2003, on many
architectures, and has dealt with many GCC ver-
sions in those years. If all else fails, Gforth can fall
back to threaded code, but it usually does not have
to.

Copy-and-patch compilation promise an improve-
ment in performance over copying without patch-
ing (as in Gforth) at a moderate increase in
architecture-speciûc code. However, while there
have been a number of publications about this tech-
nology, no production system is known to us that
currently uses it.
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Forth for ARM 64 CPUs 

Trials and tribulations 

ARM’s 64 bit CPUs are very different beasts from the 32 bit ones. The instruction mix 
Is completely different and appears to be derived from the Power PC. Cache 
behaviour Is quite different and poorly documented. VFX Forth (64 bit) has been 
ported to the ARMv8-A architecture and an alpha release is expected later in 2025. 
The current Arm® Architecture Reference Manual for the A profile is 14,568 pages 
long. Despite my reservations, the more I use this CPU, the more I come to 
appreciate it. The code density is far better than expected.

In the beginning … 

Many years ago, the 32 bit ARM CPU appeared. Over the years various instruction sets 

and derivatives appeared. As a company, ARM has always made frequent changes to the 

instruction set to support the silicon. Unlike other companies, an ARM instruction set 

supports today’s architecture. 64 bit ARMs are based on the ARMv8 architecture from 2011, 

and ARMv9 already exists. ARMv9 is basically has the ARMv8 instruction set with 

extensions. 

Under some customer pressure, we started a port of VFX Forth to the ARMv8A 

architecture. 

About the ARM64 

The ARM 64 bit CPU in native mode has very little to do with ARM32, although the 

original ARM32 and Thumb-2 ISAs are supported for legacy reasons and I shall discuss these 

no further. There are several ARM64 assembler books out there; in the main they are useless 

for people who have assembler experience and projects under their belt. You will find the 
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“Compiler Writer’s Guide to the Power PC” of use, and PowerPC assembler experience of 

value. 

The instruction set consists of 32 bit instructions only, with a number of conditional 

operations derived from PowerPC. Many of the instructions have three operands. There are 

32 registers, including a zero register and a subroutine return register. There are many 

pseudo-instructions which offer a different syntax to the base instruction. Although initially 

confusing, the instruction set makes sense after a while. Despite this, a description of the 

BFM, SBFM and UBFM instructions for human beings would be very useful. 

The big change is in the cache architecture, which is a real pain. We have not finished 

with it yet. 

Instruction set 

I will only discuss the basic and integer portions of the instruction set here. There is a 

full set of basic instructions plus enough special instructions for supporting cryptography, 

security and ARM32 that one could already call the instruction set baroque. 

Poor code density has been a problem for many RISC or load/store architectures. A side 

effect of improving code density for ARM64 has been a selection of immediate value 

encodings -  

1) Arithmetic - 16 bit, 12 bit+shift, 12 bit, 8 bit, 7 bit, 6 bit. 

2) Logical - 13 bit mask about 5000 options. Used by AND, ORR and EOR. 

3) Branch offsets - 26 bits, 19 bits, 14 bits 

4) Memory offsets - s19 bits, u12 bits, s9 bits, s7 bits, 0 

The branch instructions result in a call range of +/-128 Mbytes. Most conditional 

branches have a +/-1 Mbytes branch range. This is a vast improvement over many other 

CPUs. 

Because of the impact of mispredicted branches on performance, conditional 

instructions reduce both code size and improve performance by avoiding conditional 

branches, e.g. the end of WITHIN 

  cmp  tos, x17   \ (n1-n2)-(n3-n2) 

  csinv tos, xzr, xzr, .ls \ cy -> -1, ncy -> 0 

 Conditional select invert 
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This instruction returns, in the destination register, the value of the first source register if the 

condition is TRUE, and otherwise returns the bitwise inversion value of the second source 

register. See: CSEL, CSET, CSETM, CSINC, CSINV, and CSNEG. 

Caches 

The cache system for ARM64 is quite different  to that for ARM32. There L1 caches for  

both code and data. The minimum cache line size is 64 bytes, but is permitted to be larger. 

The size can be read by application programs running at execution level 0 (EL0). A limited 

range of cache maintenance instructions can be run at EL0 that permit the cache to be flushed 

by code running at EL0. 

Tools 

The main tools we use for porting are the VFX cross compiler. Testing is performed on 

a 64 bit version of ARM linux. We have used both UTM and Parallels to host these on Apple 

Silicon Macs. Apple produce a tool called Rosetta that enables x64 applications to run on 

Apple Silicon. Two problems with Rosetta have forced us to abandon it. 

 1) x64 Forth cross compilers are slowed down by a factor of 100 or more. 

 2) There are bugs in Rosetta that have forced other projects to abandon it. 

We have therefore moved back to cross-compiling on an x64 box, copying the output to 

an ARM Linux and then debugging. 

For both the cross compiler and the target code there are five sections that change for 

each target 

1) Assembler - an ARM64 assembler is provided with a prefix notation that closely 

follows the ARM64 standard notation. 

2) Disassembler - it is almost impossible to debug compiled native code without one. 

3) Code generator and optimiser - produces faster and shorter code than that produced 

by combining patterns. The VFX code generator is an analytical compiler that tracks 

which registers are used and what they contain. 

4) Required code - these are words that either cannot be written easily in high level 

Forth, or should be written in assembler for performance reasons.  

5) Operating system interface - calling functions in shared libraries and providing 

callbacks that can be used by the operating system. 

The following are examples of these. 
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code l!c(t) \ l addr -- 

\ *G Store and Flush instruction cache line containing *\i{addr}. 

\ ** Use in stores of code. 

  ldr x0, [ psp ]!, # 8  \ get l 

  str w0, [ tos, # 0 ]  \ save l 

  ic ivau tos   \ flush 

  dsb   SY    \ ensure completion of the invalidation 

  isb   SY    \ ensure instruction fetch path sees 

      \ new I cache state 

  ldr   tos, [ psp ]!, # 8 \ restore TOS 

  ret x30 

end-code 

dis l!c(t)  
L!C(T) 
( 0041:1850 A08740F8 )              LDR       X0, [ XPSP  ]!, # $8 
( 0041:1854 400300B9 )              STR       W0, [ XTOS, # $0 ] 
( 0041:1858 3A750BD5 )              SYS       $1BA9 XTOS 
( 0041:185C 9F3F03D5 )              DSB       # $0F 
( 0041:1860 DF3F03D5 )              ISB       # $0F 
( 0041:1864 BA8740F8 )              LDR       XTOS, [ XPSP  ]!, # $8 
( 0041:1868 C0035FD6 )              RET       XLR  ( NEXT/EXIT ) 
28 bytes, 7 instructions. 

: InOvl?      \ addr1 -- addr2|0 
\ *G Returns the overlay address (addr2) if the address (addr1) 
\ ** is within an overlay, otherwise returns 0. 
  ovl-link @ 
  begin       \ -- addr *ovl 
    dup 
  while       \ -- addr *ovl 
    2dup OVI.end 2@ within if  \ -- addr *ovl 
      nip  exit 
    then 
    ovi.link @ 
  repeat 
  nip       \ remove addr 
; 
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dis inovl?  
INOVL? 
( 0042:9F88 00FF9AD2 )              MOVZ      X0, # $D7F8 
( 0042:9F8C 2008A0F2 )              MOVK      X0, # $41 LSL # $10 
( 0042:9F90 110040F8 )              LDUR      X17, [ X0, # $0 ] 
( 0042:9F94 BA8F1FF8 )              STR       XTOS, [ XPSP, # $-8 ]! 
( 0042:9F98 FA0311AA )              MOV       XTOS, X17 
( 0042:9F9C 9E8F1FF8 )              STR       XLR, [ XRSP, # $-8 ]! 
( 0042:9FA0 5F031FEB )              CMP       XTOS, XZR  LSL# $00 
( 0042:9FA4 40020054 )              B .EQ     # $429FEC 
( 0042:9FA8 50BF41A9 )              LDP    X16, X15, [ XTOS, # $18 ] 
( 0042:9FAC BD6300D1 )              SUB       XPSP, XPSP, # $18 
( 0042:9FB0 AF0300F9 )              STR       X15, [ XPSP, # $0 ] 
( 0042:9FB4 A10F40F9 )              LDR       X1, [ XPSP, # $18 ] 
( 0042:9FB8 A10700F9 )              STR       X1, [ XPSP, # $8 ] 
( 0042:9FBC BA0B00F9 )              STR       XTOS, [ XPSP, # $10 ] 
( 0042:9FC0 FA0310AA )              MOV       XTOS, X16 
( 0042:9FC4 53A3FF97 )              BL        # $412D10     WITHIN 
( 0042:9FC8 5F031FEB )              CMP       XTOS, XZR  LSL# $00 
( 0042:9FCC BA8740F8 )              LDR       XTOS, [ XPSP  ]!, # $8 
( 0042:9FD0 80000054 )              B .EQ     # $429FE0 
( 0042:9FD4 BD230091 )              ADD       XPSP, XPSP, # $08 
( 0042:9FD8 9E8740F8 )              LDR       XLR, [ XRSP  ]!, # $8 
( 0042:9FDC C0035FD6 )              RET       XLR  ( NEXT/EXIT ) 
( 0042:9FE0 510340F8 )              LDUR      X17, [ XTOS, # $0 ] 
( 0042:9FE4 FA0311AA )              MOV       XTOS, X17 
( 0042:9FE8 CEFDFF54 )              B         # $429FA0 
( 0042:9FEC BD230091 )              ADD       XPSP, XPSP, # $08 
( 0042:9FF0 9E8740F8 )              LDR       XLR, [ XRSP  ]!, # $8 
( 0042:9FF4 C0035FD6 )              RET       XLR  ( NEXT/EXIT ) 
112 bytes, 28 instructions. 
 ok 
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Blending Forth 
mixing other languages and Forth

EuroForth'25 conference 2025-09

Ulrich Hoffmann

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to

pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler

only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-

length" names. (Check your system documentation to see whether—and how—
you can do this.)

To  summar ize:  When  you  type  a  predefined  word  at  the  terminal ,  i t  gets

interpreted and then executed.
Now, remember we said that (T| is a word? When you type the word Q],

as in

STAR 42 EMIT ;E

uho@ .de

Overview

" introduction


" implementing Forth in other languages


" abstraction and representation


" blending Forth


" demo


" conclusion
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Day of the Week and Zeller’s congruence

" implement in Pascal

function ZellerDayOfWeek(q, m, y: Integer): Integer;

…

begin 

  K := y mod 100;   // year of the century

  J := y div 100;   // zero-based century

  h := (q + ((13 * (m + 1)) div 5) + K + 

                           (K div 4) + (J div 4) - (2 * J)) mod 7;

  …

  ZellerDayOfWeek := h

end;
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Day of the Week and Zeller’s congruence

Writeln(  7 mod 3 );   // 1

Writeln( -7 mod 3 );   // -1

Writeln(  7 mod -3 );  // 1

Writeln( -7 mod -3 );  // -1

In standard Pascal (ISO 7185 and its descendants like Free Pascal, 

Turbo Pascal, Delphi) the mod operator always returns a result with the 

same sign as the dividend (the left operand).

Day of the Week and Zeller’s congruence

function ZellerDayOfWeek(q, m, y: Integer): Integer;

…

begin 

  K := y mod 100;   // year of the century

  J := y div 100;   // zero-based century

  h := (q + ((13 * (m + 1)) div 5) + K + 

                           (K div 4) + (J div 4) - (2 * J)) mod 7;

  …

  ZellerDayOfWeek := h

end;

Day of the Week and Zeller’s congruence

function ZellerDayOfWeek(q, m, y: Integer): Integer;

…

begin 

  K := y mod 100;   // year of the century

  J := y div 100;   // zero-based century

  h := (q + ((13 * (m + 1)) div 5) + K + 

                           (K div 4) + (J div 4) + (5 * J)) mod 7;

  …

  ZellerDayOfWeek := h

end;
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Implementing Forth in Python

" ongoing adventure to implement Forth in diûerent languages


" Assembler


" Forth itself


" Emacs-Lisp


" Golang


" Python


" Insightful discoveries

Implementing Forth in Python

" How to implemement stack and return-stack?


" How primitives?


" How the dictionary?


" How the inner and out interpreter?


" What about BASE and STATE?


" How to read characters one-by-one?

Factorial

10 fac . 3628800  ok �

: fac ( n -- n! )

    ?dup IF dup 1- recurse * exit THEN 1 ;
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Abstraction and Representation

" You take the elements of the implementation 
language to realize the elements of the target 
language Forth.


" data refinement


" operator refinement 

0000000000101010                               

                               

abstraction

function

42

1111111111111111                               

                               

abstraction

function

-1

1111111111111111                               

                               

abstraction

function

65535

abstraction function sometimes called retrieval function

Data Refinement depends on type

signed int unsigned int

Data Refinement

representation relation sometimes called refinement relation

0000000000101010                               

                               

abstraction

function

true

1111111111111111                               

                               

abstraction

function

true

0000000000000000                               

                               

abstraction

function

false

representation

relation
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Operator Refinement

ret(σ ³ τ) = (ret σ)±(ret τ)

Die abstrakte Welt

Die konkrete Welt

U

V

τ

!

♥

W

ν

ret ret ret

(U,V )
³

³³³³³́ W

ret↑ ↑ret

(σ, τ)
±

³³³³³́ ν

the abstract world

the concrete world

U

V

σσ

τ

!

♥

W

ν

ret ret ret

Python int 42                               

                               

abstraction

function

42

Python int -1                               

                               

abstraction

function

-1

Python int 65535                               

                               

abstraction

function

65535

Data Refinement

Factorial

10 fac . 3628800  ok � 
100 fac . 
93326215443944152681699238856266700490715968264381621468592963895217599993229915608
941463976156518286253697920827223758251185210916864000000000000000000000000  ok � 

: fac ( n -- n! )

    ?dup IF dup 1- recurse * exit THEN 1 ;
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Implementing Forth in Python

" Stack


" Primitives

-1 . -1  ok � 

3 4 + . 7  ok � 

1 u. 1  ok �

def plus(s): 
  "+" 
  s.stack[-2:] = [ s.stack[-2] + s.stack[-1] ]

But is it Forth?

Let’s run the Forth-94 core test.

But is it Forth?

include core.fs  
TESTING: CORE WORDS 
TESTING: BASIC ASSUMPTIONS 
TESTING: BOOLEANS: INVERT AND OR XOR 
TESTING: 2* 2/ LSHIFT RSHIFT 
WRONG NUMBER OF RESULTS: { MSB BITSSET? -> 0 0 } 
TESTING: COMPARISONS: 0= = 0< < > U< MIN MAX 
INCORRECT RESULT: { MIN-INT 0= -> <FALSE> } 
INCORRECT RESULT: { MIN-INT 0< -> <TRUE> } 
INCORRECT RESULT: { MAX-INT 0< -> <FALSE> } 
INCORRECT RESULT: { MIN-INT 0 < -> <TRUE> } 
INCORRECT RESULT: { MIN-INT MAX-INT < -> <TRUE> } 
INCORRECT RESULT: { 0 MAX-INT < -> <TRUE> } 
INCORRECT RESULT: { MAX-INT MIN-INT < -> <FALSE> } 
INCORRECT RESULT: { MAX-INT 0 < -> <FALSE> } 
INCORRECT RESULT: { MIN-INT MAX-INT > -> <FALSE> } 
INCORRECT RESULT: { 0 MAX-INT > -> <FALSE> } 
INCORRECT RESULT: { 0 MIN-INT > -> <TRUE> } 
INCORRECT RESULT: { MAX-INT MIN-INT > -> <TRUE> } 
INCORRECT RESULT: { MAX-INT 0 > -> <TRUE> } 
� the int -1 does not represent an unsigned value.
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Implementing Forth in Python

We need to implement cyclic 2’s complement numbers

-1 . -1  ok � 

-1 u. 18446744073709551615  ok � 

-1 1 + u. 0  ok � 

-1 2 + u. 1  ok �

class Int64: 
    MAXINT=2**64-1 
    MSB = (MAXINT+1)//2 

    def __init__(self, value): 
        if isinstance(value, Int64): 
            self.value=value.value  
        else: 
            self.value = value & self.MAXINT 

    def __add__(self, other): 
        if isinstance(other, Int64): 
            return Int64(self.value + other.value) 
        return Int64(self.value + other) 
... 

But is it Forth?

Let’s run the Forth-94 core test - again.

But is it Forth?

include core.fs TESTING: CORE WORDS 
TESTING: BASIC ASSUMPTIONS 
TESTING: BOOLEANS: INVERT AND OR XOR 
TESTING: 2* 2/ LSHIFT RSHIFT 
TESTING: COMPARISONS: 0= = 0< < > U< MIN MAX 
TESTING: STACK OPS: 2DROP 2DUP 2OVER 2SWAP ?DUP DEPTH DROP DUP OVER ROT SWAP 
TESTING: >R R> R@ 
TESTING: ADD/SUBTRACT: + - 1+ 1- ABS NEGATE 
TESTING: MULTIPLY: S>D * M* UM* 
TESTING: DIVIDE: FM/MOD SM/REM UM/MOD */ */MOD / /MOD MOD 
TESTING: HERE , @ ! CELL+ CELLS C, C@ C! CHARS 2@ 2! ALIGN ALIGNED +! ALLOT 
TESTING: CHAR [CHAR] [ ] BL S" 
TESTING: ' ['] FIND EXECUTE IMMEDIATE COUNT LITERAL POSTPONE STATE 
TESTING: IF ELSE THEN BEGIN WHILE REPEAT UNTIL RECURSE 
TESTING: DO LOOP +LOOP I J UNLOOP LEAVE EXIT 
TESTING: DEFINING WORDS: : ; CONSTANT VARIABLE CREATE DOES> >BODY 
TESTING: EVALUATE 
TESTING: SOURCE >IN WORD 
TESTING: <# # #S #> HOLD SIGN BASE >NUMBER HEX DECIMAL 
TESTING: FILL MOVE 
TESTING: OUTPUT: . ." CR EMIT SPACE SPACES TYPE U. 
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But is it Forth?

include core.fs TESTING: CORE WORDS 
... 
TESTING: OUTPUT: . ." CR EMIT SPACE SPACES TYPE U. 
YOU SHOULD SEE THE STANDARD GRAPHIC CHARACTERS: 
 !"#$%&'()*+,-./0123456789:;<=>?@ 
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_` 
abcdefghijklmnopqrstuvwxyz{|}~ 
YOU SHOULD SEE 0-9 SEPARATED BY A SPACE: 
0 1 2 3 4 5 6 7 8 9  
YOU SHOULD SEE 0-9 (WITH NO SPACES): 
0123456789 
YOU SHOULD SEE A-G SEPARATED BY A SPACE: 
A B C D E F G  
YOU SHOULD SEE 0-5 SEPARATED BY TWO SPACES: 
0  1  2  3  4  5   
YOU SHOULD SEE TWO SEPARATE LINES: 
LINE 1 
LINE 2 
YOU SHOULD SEE THE NUMBER RANGES OF SIGNED AND UNSIGNED NUMBERS: 
  SIGNED: -8000000000000000 7FFFFFFFFFFFFFFF  
UNSIGNED: 0 FFFFFFFFFFFFFFFF  

But is it Forth? It passes the Forth-94 Core Test

include core.fs TESTING: CORE WORDS 
... 
YOU SHOULD SEE THE NUMBER RANGES OF SIGNED AND UNSIGNED NUMBERS: 
  SIGNED: -8000000000000000 7FFFFFFFFFFFFFFF  
UNSIGNED: 0 FFFFFFFFFFFFFFFF  
TESTING: INPUT: ACCEPT 

PLEASE TYPE UP TO 80 CHARACTERS: 
it works 

RECEIVED: "it works" 
TESTING: DICTIONARY SEARCH RULES 
GDX exists  ok �

Yes!
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What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to

pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler

only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-

length" names. (Check your system documentation to see whether—and how—
you can do this.)

To  summar ize:  When  you  type  a  predefined  word  at  the  terminal ,  i t  gets

interpreted and then executed.
Now, remember we said that (T| is a word? When you type the word Q],

as in

STAR 42 EMIT ;E

!

Blending Forth

" But the stack can hold not just (our) numbers.


" It’s implemented as a Python list that can hold any Python 
object


" float numbers


" strings


" lists and dictionaries


" method and functions


" …
pluggable number system
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Blending Forth
Python Objects on the Data Stack

# need now  ok �

# now . datetime.datetime(2025, 9, 13, 6, 56, 15, 133285)  ok �

1.2 3 + .  4.2  ok �

# 1.2 3   ok � 
1.2 3 # .s  
0: (IntXX) 3 
1: (float) 1.2 ok � 

1.2 3 # +  ok � 

4.2 # . 4.2  ok �

Related Work

" oforth by Franck Bensusan


" objects on the stack


" no standard forth syntax (control structures)


" similar enough to be called Forth

But is it Forth?

"If it walks like a duck and  

it quacks like a duck,  

then it must be a duck“ 

Does it?
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Demo

Blending Forth

" Why not use Python in first place?


" Forth is concatenative and allows to execute 
programs interactively step by step.

Conclusion

" implementing Forth in other languages	 Forth inherits their properties


" abstraction and representation	 	 the heart of implementation


" blending Forth	 	 	 	 Where to go from here?

Blending Forth

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to

pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler

only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-

length" names. (Check your system documentation to see whether—and how—
you can do this.)

To  summar ize:  When  you  type  a  predefined  word  at  the  terminal ,  i t  gets

interpreted and then executed.
Now, remember we said that (T| is a word? When you type the word Q],

as in

STAR 42 EMIT ;E

Discussion
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What is a character?

UTF-8, Unicode, and the Xchar wordset

M. Anton Ertl, TU Wien

Concepts

Concept UTF-8 Forth

code unit 1 byte char
code point 1-4 bytes xchar or string

glyph/character ≥ 1 code point string

Use Strings!

1

Usage inside Gforth (2021)

xchar string

3 x-size

1 xc!+ 43 move

3 xc!+? 43 move

5 xc, 9 mem,

5 xc-size 114 nip

5 xc@+ 43 move

4 xchar+

1 xemit 151 type

2 xkey

1 xkey?

xchar ext string

2 +x/string 71 /string

0 -trailing-garbage

1 ekey>xchar

6 x-width

3 xc-width 6 x-width

6 xchar-

0 xhold 4 holds

1 x\string- 71 /string

2
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