Investigating Goodstein Sequences

Bill Stoddart

September 12, 2025

Abstract

The weak and strong Goodstein theorems are examples of strongly
counter intuitive results concerning certain integer sequences that typi-
cally grow very rapidly but eventually converge to zero. In this paper we
describe the weak Goodstein sequences and aim provide the reader with
an intuitive understanding of why the sequences converge. After that,
although the paper remains descriptive, it takes a mathematical turn. We
introduce transfinite ordinal numbers and demonstrate a decreasing se-
quence which bounds a weak Goodstein sequence above and terminates
in zero. We consider the extraordinary behaviour of the strong Goodstein
sequence and show how to construct corresponding decreasing sequences
of transfinite ordinals. We call for help from an AT model to do the heavy
lifting we require for our algebraic manipulations.

1 Introduction

A weak Goodstein sequence is constructed by choosing any number and and
expressing it in base 2. Successive numbers are formed by reinterpreting the
expression of the current number after incrementing the base, then subtracting
1. The Forth program G performs these steps, taking as input the first number
in the current sequence. Starting with 266 the first two steps are:

266 G
1000010102 = 26649
1000010103 — 1 = 1000010023 = 65901 ¢

At each step we increase the base, in this case from 2 to 3. Reinterpreting the
same string of characters in the new base gives a value which has increased from
266 to 6591. We then subtract 1.

Here are the following three steps:

1000010024 — 1 = 1000010014 = 656011¢
1000010015 — 1 = 1000010005 = 3907501 ¢
1000010006 — 1 = 1000005556 = 167983110

Increasing the base and reinterpreting the same string of figures has an enormous
effect, again which the effect of subtracting 1 seems relatively insignificant. So
why do such sequences converge to zero?



One initial hint can be seen in the above example. Although successive terms
grow rapidly in the above example their representations do not grow in size.

2 A small example

We take the example if 4 = 100,.
Reinterpreting the string 100 in base 3 gives us 1003 = 9.

Now subtracting 1 we see 1003 — 1 = 223 Subtracting 1 has required a carry
and in this case has reduced the size of the representation from 3 figures to 2.

Let’s follow the process and see if the 2 figures will eventually reduce to 1.

4 G

1005 = 444

1003 — 1 = 2253 = 819
22, — 1 =214 =99
215 — 1 = 205 = 1099
205 — 1 = 156 = 115,
157 — 1= 147 = 114,
1dg — 1 =135 = 1150
139 — 1 =129 = 1149
1270 — 1 = 1150 = 1140
115, — 1 =10y = 1140
1012 — 1 = By2 = 1149

When we arrive at base 6 our representation has a leading 1. At this point
increasing the base increments the sequence value by 1 and subtracting 1 reduced
it by 1 so the sequence values are identical until we arrive at base 12.

At this point our representation is 1015 — 1 = Bjs and we have reduced our
representation to a single figure. With a single figure representation increasing
the base has no effect, so our sequence terms decrease by 1 at each step as
follows:

1019 — 1 = Bio = 1149
Bz —1=A13 =109
A1y —1=914 =%
915 — 1 =815 =819
816 — 1 ="T16 = 710
T17 — 1 =10617 = 619
618 — 1 =518 = 510
519 — 1 =419 = 419
420 — 1 =329 = 310
321 — 1 =291 =219
220 — 1 =122 = 139
la3 —1 =023 =019



3 Potential and Achievement

Following the above discussion we wonder if we might be able to introduce some
definitions that that in some sense can capture the eventual reduction of the
length of our representation is a more finely calibrated way. With this in mind
we introduce Potential and Achievement.

Returning to our first example of 266 = 1000010102 we are starting with a
number which requires 9 bits for its representation. The maximum value we
can represent in binary with 9 characters at our disposal is 512-1 = 511. We
call this the potential of a 9 bit binary number. The value 100001010, achieves

266/511 = 0.5205 of its potential, and we will say it has an achievement
of .5205. The maximum value we can represent in 9 places with a base 3
representation is 3° — 1 = 19628. The second value in our sequence is 6590,

so its achievement is 6590/19628 = 0.3450.

This pattern continues, so that as the values in the sequence initially increase
before eventually decreasing, the achievements of the terms is always decreas-
ing. Since an achievement of zero is associated with a number which is zero,
if we could prove that the achievements converge to zero, this would prove the
sequence converges to zero. However, proving the convergence of a sequence
of real values terms to zero is not in general easy to do, wheras a decreasing
sequence of positive whole numbers willalways decrease to zero. Could we per-
haps produce a decreasing sequence of positive whole numbers to act as upper
bounds to our sequence? With a sequence that increases to rapidly this would
seem difficult, but we will do it by admitting transfinite numbers.

4 Transfinite Numbers - defining numbers with
sets

The traditional proof of convergence for Goodstein sequences uses Cantors hi-
erarchy of “ordinal numbers”. We define numbers in terms of sets, as follows.
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n {0,1,2, .. n —1} n is defined as the set of all numbers less than n.
Then if numbers a,b, a < b when a C b

The smallest set that is bigger than all the finite numbers is referred to as w,
and is defined as follows:

w = {0,1,2, ... }.
This is our first transfinite number. We can define its successor as follows:
w+1 = {w,0,1,2.....}

We can continue in this way defining a hierarchy of transfinite numbers



w, w1, w+2, .. 2w, 2w+1, ,,, 3w, ..w? W W,

Note that although w has a successor, it has no predecessor. w — 1 is undefined.
It shares this property with other “limit ordinals”, e.g. 2w, w?, w* etc.

5 Bounding the terms of a Goodstein sequence
using ordinal numbers

The terms of any Goodstein sequence can be bounded above by a decreasing
sequence of ordinals. A well known theorem states that any decreasing sequence
of ordinals terminates in zero, and we can call on this theorem to show that any
Goodstein sequence terminates in zero.

We give an example to show such a sequence of ordinals is created, and how it
decreases.

Base Term Transfinite bound
2 100, = 22 w?

3 321 =2x3+2 2w+ 2
4 2x44+2—-1=2x44+1 2w+1
5 2x5+1—-1=2x5 2w

6 2x6—1 =6+5 w+5
7 7T+5—-1 =744 w+4
8 8+4—-1 =8+3 w+3
9 9+3—-1 =9+2 w42
10 10+2—-1 = 10+1 w+1
11 11+1-1 =11 w

12 12—-1 =11 11

13 11-1= 10

We have shown the sequence up to the point where the value of the current
term is represented by a single figure. From this point onwards any increase in
the base has no effect on the next value, so terms decrease by 1 at each step
until 0 is reached.

6 The Strong Goodstein Sequence

Strong Goodstein sequences are specifically designed to grow very rapidly. The
strong Goodstein sequence starting at 266 has the following values for its first
5 terms, yet eventually converges to zero.

266, 4.4 x 1036, 3.2 x 10616, 2.5 x 1010972

For perspective one can bear in mind that that the number of atoms in the
observable universe is commonly estimated to be in the region of 108°

A strong Goodstein sequence starts with a binary number expressed in “hered-
itary base notation”. This notation restricts us to describing base n numbers



using exponentiation on n and addition of numbers 1 to n-1 to fill in intermediate
values. For example in base 2:

1=1,2=23=2+1,4=225=224+1,6= 2242,
7 =2242+1,8 = 2241 16 = 2%°
31 = 22° 19241 1 92 10 1

The proof of convergence of the sequence constructs a corresponding decreasing
sequence of transfinite terms obtained by replacing the base by w. As an example
we will take the sequence whose first term is 16, which is expressed in hereditary
base notation as 22° The initial transfinite term is obtained by replacing each 2
in the base 2 term with w, giving w*”. The next term in the numeric sequence
is obtained by replacing each 2 in the hereditary base representation by 3 and
subtracting 1, giving 33— 1. However, this is not in hereditary base 3 form.
The next transfinite term is given by expressing the numeric term in hereditary
base 3 and replacing each occurrence of the base 3 by w.

7 Help from an AI model

Converting 33> — 1to hereditary base 3 and producing the related transfinite
ordinal term requires non-standard and relatively heavy algebraic manipulation,
so I was curious to see if it would be useful to enlist the help of an Al agent,
in this case chatGPT 5, which had just been released and was supposed to be
capable of PhD level maths. After initial incorrect attempts in which it did
not interpreted hereditary base notation correctly, and I had to remind it that
w —1 was undefined, and after being given the hint that since 33" has the form
73 — 1, we can use the identity 2> —1 = (2 — 1)(z? + 2z + 1), it did produce
the complex formulae used in the rest of this section.

3 -1 =
2X32><32+2><3+2 + 2X32><32+2><3+1 + 2X32><32+2><3+
2X32x32+3+2+2x32x32+3+1 +2X32><32+3+

2X32><32+2_|_2x32><32+1 Jr2><32x32+
2X332+2><3+2+2X332+2><3+1_|_2X332+2><3+
2x 3342 4 oo g AT 4 93y
2x3¥+2 4 2x 3+ 4 2x38 4
2X32X3+2+2X32X3+1 +2X32><3+
2x33+2 4+ 2x33F1 4 2x33 +

2x32 +2x3 + 2

Note, we don’t go directly to calculating the value of the expression. We keep it
in this form, in which 3 is the current number base, so that we can obtain the
corresponding transfinite term by replacing each 3 by w.



2w2w2+2w+2 + 2w2w2+2w+1 + 2w2w2+2w+
W’ Fw 2 4 oot twtl 4 92t fw
2w’ + 2 + Q2w 1 + 2w2”2+
et H w2 gt F 2wl g g W+ 2wy
et twt2 gt twtl 49wt tw g
2wt 2 gt H 1 g ge? 4

2 T2 4 22wt 492 4

2w T2 4 20t 4 20w 4

22 4+ 2w + 2

The important point about this expression is that it represents a transfinite
number less than w®”. We can see this by comparing w*” to the highest order
term in the expression.

A reader might conceivable wonder why go to such bother. Can’t we just use
w®” — 1 as our next transfinite term? The reason is that w*” is a limit ordinal
and has no predecessor, so w*” — 1 is undefined.

8 Background and Related Work

Reuben Goodstein introduced his sequences in the paper “On the restricted
ordinal theorem”, Journal of Symbolic Logic, Vol. 9, No. 2 (June 1944), pp.
33-41. The sequences were specifically designed to provide an application for
transfinite ordinals, and hereditary base notation was specifically introduced
for describing the strong sequences. In L. Kirby and J. Paris, “Accessible inde-
pendence results for Peano Arithmetic,” Bulletin of the London Mathematical
Society 14 (1982), 285-293, we find a proof that convergence of the strong Good-
stein sequence cannot be proved in the usual formalisation of arithmetic using
Peano’s axioms. This result is sometimes cited as an illustrative example for
Godel’s incompleteness theorem, which states that all non-trivial mathematical
theories must include results which are true but unprovable within the theory.
An unpublished paper of Cansell and Abrial represents the strong Goodstein
sequences as finite trees, and shows proof of their convergence can be deduced
from the properties of these finite trees.

9 Conclusions

We've looked at Goodstein Sequences and tried to give some understanding
of why these converge to zero despite initially growing so rapidly. The weak
Goodstein sequence grows by interpreting the same string of figures in a new
base, incremented by 1 at each step, then subtracts 1. Our first clue as to
why the -1 steps wins out over the base increase is to notice that the number of
figures used in the representation of each step does not increase. This allows the
-1 step to erode successive values until the value of the current term is expressed
as a single figure. At this point the base increase has no further effect and the
value of successive terms decreases by 1. Another clue is given by why value



each term achieves in comparison with its maximum in the current base. The
“achievement” of successive terms diminishes.

The classic convergence proofs forGoodstein sequences use transfinite ordinals.
We give a short introduction to ordinal numbers, with finite numbers defined in
terms of finite sets, and show how this can be extended to introduce “transfinite”
numbers w, w + 1, ... which are represented by infinite sets. We show how each
weak Goodstein sequence is bounded above by a companion sequence whose
initial terms are transfinite ordinals and whose terms decrease, thus, by a well
known property of ordinals, inevitable arrive at zero.

Terms in the companion sequence are obtained by taking the expression of each
term in the first sequence, written in terms of the current base, and replacing
each occurrence of the base value by w.

The same method is used with the strong Goodstein sequence, in which terms
are written using hereditary base notation In this notation, the coeflicients of a
representation are also expressed in terms of the current base, greatly increas-
ing the effect of a base increment and generating some of the largest numbers
encountered in number theory. However we can still use the trick of producing
a decreasing companion sequence of upper bounds. Here we limited ourselves to
showing how one such term was generated, using an Al model to help us with
the algebraic manipulations.



