Pertormance Analvsis in Threaded Code Systems

Michael Perry

Abstract

The importance of performance analysis to the iterative design process
discussed. Several techniques for performance analysis in Forth systems are
described. Some related debugging techniques are mentioned.

1z

[terative Design

Forth encourages the use of iterative desian methodology, which involves the
rapid repetition of a short design/implement/test cycle. Most Forth syctems
pravide reasonably good tools for finding bugs in code and flaws in algorithms.
Few systemsz provide adequate tools for diagnosing performance problems. A qood
rule of thumb is that a program spends ninety percent of its time executing ten
percent of the code. When some performance goal must be met it ic neccessary to
find those routines where most time is spent and make them run faster. Forth
encourages modular programming, and it is easy to replace a <low routine once i1t
has been found.

Memory Allocation

One requirement which many of these tools share is the allocation of memaory
tor storing the results, usually a counter for each word in the dictionary. A
very useful technique is available on zystems which have a view field in the
header of the dictionary entry for each word. The wiew field points to the source
code block on disk. Dnce having used a system with the ability to automatically
locate the source for any word, it is difficult to go back to a system which
lacks it.

The view field can be borrowed tor other uses, such as the counter nezded
tor these tools. When the view field is not available, an array with one entry
per word in the dictionary is required. For compatability, the word JVIEW should
convert the address of a code field into the address of the corresponding cell
This Kind of code is wvery dependent on the particular system and CPU being used.
Examples Tater in the paper are for the MC88868%5 running F33, a public-domain,
33-standard Forth system.

Monte Carlo Analysis

One simple tool which gives a statigtical indication of the frequency of
execution of a word uwses a real time clock interrupt routine which pericdically
samples the interpreter pointer (IP) or program counter (PC). This can be used in

a couple of different waye, either by incrementing a counter for the w~rd being
executed, or by building a histogram of IP or PC activity.

There are several ways to decide which counter to increment. Assuming a
post-incrementing, indirect-threaded cystem, IP points to a pointer to the code
field of the next word to execute, It would be convenient, but wrong, to
increment that word’s counter. It may or may not be a slow routine; after all, it
is not even being executed at the moment. To increment the counter for the word
into which the IP points is better (and slower), but still incorrect, becauss
that word merely called the word being executed.

It is best to increment the counter for the word currently executing, which is
pointed to by the cell before the one pointed to by the IP.

LABEL BUMP ¢ increment counter of word being executed.)
-2 IP D) A3 MOQVE A8) A MOVE TO-VIEW #) JSR 1 41) ADDG RTE
(TO-YIEW converts a code field address in A@ to a view field address in Al D)

To build a histogram, an array is allocated whose size depends on the
decired resolution, Two variables contain the upper and lower limits of the range
ot addresses of interest., If the IP (or PC, as the case may be) is inside the
window of interest, the cell corresponding to its relative position is
incremented. The results are displayed as a histogram, and can give an idea of
where most time is spent. After each pass the window can be made narrower to get
more precise results, but more time will be required to get the same number of
counts inside the window.

Static Frequency Analysis

Another method is static frequency analysis. A counter is associated with
each word in the dictionary, and they are initially set to zero. Each time the
word is encountered by the compiler its count is incremented. After compiling, a
table of counts is printed. While this does not show the relative execution times
or frequency of execution, it at least indicates which words may deserve some
attention.

Implementation requires writing a new compiler loop which finds each word
and increments its count. Immediate words such as IF present a problem. The best
solution is probably to redefine them to increment the counter for any words
which they compile. Comments and words which terminate compilation must be
executed as usual while compiling.

: COMPILER (-= zetup
BEGIN BL WORD FIND DUP 8>
IF DROP EXECUTE
ELSE IF 1 OVER >VIEW +! , ELSE DROP THEN
THEN finished?
UNTIL

: IF { —— adr flag)
COMPILE ?BRANCH >MARK 1 073 ?BRANCH >VIEW +! ; IMMEDIATE

Dynamic Frequency Analysis

In some systems the address interpreter (NEXT > is a single routine shared
by all cocde words. In other eystems it is distributed, with each word having its
own copy. A distributed NEXT is usually faster, but prevents the use of some
interesting techniques which involve replacing NEXT with a routine which does
additional work. :

In dynamic frequency analysis, NEXT is replaced by a routine which
increments the counter for the word which is about to be executed, in addition to
performing the usual NEXT function.

LABEL BUMP-NEXT
IP)+ A9 MOVE TO-VIEW #) JSR 1 A1 > ADDR A8) A8 MOVE AB » JMP
(Note the similarity to the BUMP routine qiven earlier.)

As before, all counters are zeroed before running the code to be analysed,
and a table of counts is printed afterwards. This technique still does not show
which routines take the longest to execute, but it does show which are executed

most frequently, and that is often a good indication of where time is being
spent.

Another limitation is that real time code will almost certainly fail to be
fast enough while running the test, and this may change the behavior of the
system enough to render the results meaningless. In such time critical cases,
only hardware tools will accurately reflect the operation of the system.

Assembler Cycie Count Generation

An assembler in a Forth system is relatively simple. Ordinarily it provides
a minimum of error checking, and can be defined in from three toc fifteen screens
or so. It is possible to add features such as error checking to the assembler.
For performance analysis, information about instruction and addressing mode
timing can be added to the assembler. Whenever an instruction is assembled, a
cycle counter is incremented by the duration of the instruction and its
addressing mode or modes. In many cases the actual execution time will differ
because of pipelining, variable execution times, or inaccurate data in the
manual. Howewer, it is usually possible to get a good idea of the worst case
time, and that is normally the best quide to performance.

The execution time for a high level definition can be calculated as the sum
of the times of the components, plus the execution time of MEXT times the number
of components, plus the entry and exit times. For this calculation to be
possible, the timing information for every word must be available, This can be
built in to the dictionary entry for each word by the meta-compiler; it ic more
difficult if the Forth system’s source is in ascembly language. When tarqget
compiling small applications the counts can be Kept just in the host system.

One significant limitation of this technique is that most words contain some
control structures. In the case of IF ELSE THEN structures, the times of the two
branches can be calculated and the larger value used. For DO LOOP and BEGIN WHILE
REPEAT or BEGIN UNTIL structures the situation is much more difficult. The

structure could be assigned a duration equal to one pass through its body, but
this is not likely to be correct.

Fortunately those words on which performance usually depends are those
buried deep inside loops of one kind or another, and so it is not so neccessary
to analyse higher level words accurately:

Debugqging

As mentioned before, several debugging tonle can be built on special
versions of NEXT. The simplest is a breakpoint. In NEXT the IP is compared to the
contents of a variable which contains the address at which a breakpoint has been
set. If they are the same, execution is aborted or a breakpoint handler is
executed. An array of addresses can be used instead of a single variable i+
multiple breakpoints are desired.

Y-

A debugger can use a NEXT which tests the IP against a pair of addresses,
and executes a trace routine if it is between them. Another method iz to execute
trace whenever the return stack depth has some walue, but that approach is a bit
trickier to use,

A related tool protects the contents of an addrezs, nNeXT compares the
present contents of the protected address to a saved walue, and enters the
debuqgger if they differ,

CREATE SAVED 4 ALLOT (address, value)
LABEL PROTECTING-NEXT
SAVED #) AB LEA AR >+ Al LMOVE A2) DB MOUE
Al > DB CMP 8<¢> IF TRACING #) JMP THEN ¢ fall through ?

LABEL NORMAL-MNEXT

IP)+ AR MOVE A8) A MOVE AB) JMP
(TRACING sets the debugger window to point to the word which caused the)
(change, and NORMAL-NEXT is a copy of the normal NEXT code.)
LABEL PROTECTING
PROTECT ING-NEXT #) JMP
CODE PATCH-NEXT ¢ --
PROTECTING #) >NEXT #> LONG MOUE NEXT END-CODE
(installs a jump to the new NEXT on top of the old NEXT)
: PROTECT (address --)
DUP @ SWAP SAVED 2! PATCH-NEXT ;

Conclusions

Many powerful tools for debugging and analysis are possible in a
threaded~code system. The flexible and open nature of these systems allow
interesting dynamic modifications to their structure and behavior. Continued
exploration of the possiblilities will doubtless prove rewarding.

Bibliography

Laxen, H.: Debugging Techniques
Faorth Dimensionsg, wv.4 #2 and 43
McClees, H.: A Functional Usage Analvser
Rochester Forth Conference Proceedings, 17383
Russell, J. & Solntseff, N.: Break Point Utility
Rochester Forth Conference Proceedings, 1934
Spreier, P,: Performance Monitoring in Forth
FORML Conterence Proceedings, 1981
Whitney, A. & Conrad, M.: Call Forth for Realtime Control Programming
Computer Design, v.22 #5

