AIN> —-A-

Screen # 1
(GENERIC OPERATORS Terry Rayburn TGR 16:48 10/25/85)

Suppose we wish to extend the TO concept by preparing a
set of words for defining data structures and the operators ap-
propriate for those structures. Simple operations like fetch,
store, display and input are desired for several different data
typesy e.g.: integer, double, register or vector. It would be
nice to use operate on instances of these types with generic op-—
ators like FROM and TO instead of type-specific words like B9, @
or 29. What would we like such a structure to do for us?

First, we should like to have readable syntax for the
application program. In English this suggests a prefixed form
as " Dperator Operand"; e.g.: DISPLAY NARF. Second, we would
1ike for the declaration of the instances of the data type to be
as concise as possible, as easy as VARIABLE NARF. Third, we
would like to hide all the methods of access with the type
definition and bind them automatically to the instances of the

Screen # 2

(TGR 16:03 10/25/85)
of the data type. Third, we would like the definition of data
types to be as readable as possible, preferably an analog to an
approach with which we are already familiar. Finally, we would
like to minimize the penalty for using such an approach.

As a starting point, suppose each instance of a data
type pointed to a table of methods for that type. The first
method might be the fetch operation selected by the generic op-
erator FROM, the second might be the TO method, etc. This table
could be a list of CFAs. Since the front end of such a type
definition is a CREATE and some data allocation, and the tail
end is a list of CFAs, we choase a sytax that looks like!l
: REGISTER CREATE O , METHODS> (list of 1 - n operations] ;
We let the compiler do the work of building our table instead of
creating some complex code of such as:

‘" BYTE.FETCH.METHOD ,

Screen # 3

(TGR 16:16 10/25/85)
It might be desirable to let the naming of an instance of a
data type have some default bekhavior. Most would like that the
naming of an INTEGER would put its value on the stack like

a CONSTANT does. Since all operators can be defined as METHODS>
there is no need for the address. If an instance is named, we
let the first method be the default, then the programmer may
pick his favorite operation.

We see then that the definition for METHODS> 1s just a
version of DOES> that only executes the first Forth word follow-
ing rather than all words following. This allows implementation
of this code piece by looking at and understanding the behavior
of DOES> in the Forth implementatior at hand.

We prefer that the operator have minimal impact at run-
time. Rather than have an operator look into the METHODS> table
at run—time, we do. it at compile time. The generic operators

~2-

Screen # 4

(TGR 16:31 10/25/85S)
IMMEDIATE and look up and compile the CFA of the type-specific
operator given in the METHODS> table. For minimum space, we
would like the form: FROM NARF
to compile: / cfa.of.fetch.method / pfa.of.narf

This is an implementation detail left as an exercise for
the reader. I choose to waste a little space to preserve the

analog with CREATE ... DOES> and compile:

/ LITERAL / pfa.of.narf / cfa.of.fetch.method /

so that all the methods may expect the address of the data area
to be on the stack.

The original version of this was done under polyForth II
for the IBM PC and the PDP-11, For educational purposes, here
is the MS-DOS FB3 version. I intend to create a version for
Laboratory Microsystems, Inc. PC-FORTH shortly.

Note on screen 3 the word DO-METHOD. This is the

Screen & S
(TGR 16:45 10/25/85)
interactive version. I usually define SO0 as DO-METHOD. Then 1
enter SO DISPLAY NARF to see a value during debugging. A col-
league defines // as DO-METHOD. It would be perfectly accept-
able to me to make METHOD: decide whether to compile or execute.

Finally, I present an idea for future work, I consider
the data types that have ortogonal methods tables to be members
of the same super class. For example, INTEGER and BOOLEAN types
might have the operators shown on screen 4. A data type of
LINKED-LIST would have generic operators nothing like thiz at
all, but its operators might look very much like those of type
B-TREE. So far, I have no way to make such a relationship
explicit.

These techniques have been in use about 4 months by 4
different programmers on two projects. The result has been a
dramatic improvement of the readability of our code.

Scr # 1 B:METHODS.BLK
\ methods
code domethods
ax pop w inc w inc w push
ax w mov O [wl w mov G [wl Jmp

end-code

VONDPRBLBWNPON T

" Scr # 2

B:METHODS.BLK

[domethods 2+] literal

: methods> compile (;code) 232 ¢ CALL > C,

here 2+ -

»

s immed

literal @ 3 + + @ ,

does> @ ([(methodl ;

method not defined™ ;

Q \ (methodl], method: do-method
1 ! [(methodl (n)
2 defined if dup 2+ [compilel
3 elae count type abort" 7"
4 then ;
S
© ! method: create , immediate
7
8 ! -defined (pfa -) 1 abort"™
9

10

11

12

13

14

1S

Scr # 3 B:METHODS.BLK
o \ do-method
1 ! do-method
2 DEFINED
3 IF >BODY @
4 DEFINED
S iF DUP >BODY SWAP @ ROT
& ELSE COUNT TYPE = ABORT" 7"
7 THEN
8 ELSE COUNT TYPE ABORT"™ 7°
9 THEN ;

10

11

12

®
o 14

\ method offset

3+ + @

EXECUTE

9-24-85tgr

iate

9-21-85tgr

9-24-85tgr

VoeNDU S WNHFOHN

U
0
VoONOUL WNHFOH

T e
Nk wNEO

u
0
H

VDENDULArWNPEO

4 B:METHODS.BLK
\ operators for class DATA 9-24-85tgr
O method: from
2 method: to
4 method:! enter
6 method: diaplay
8 method: tally 8 method: set
10 method! clear 10 method: reaet
5 B:METHODS.BLK
\ data: register 9-21-85tgr
: r.enter (a-)
space pad 6 blank pad S5 expect pad 1- number drop swap !
: r.display (a-> @ 0 6 d.r ;
¢! r.tally ¢ a-) dup @ 1+ swap ! ;
¢ register create O , methods> @
!
r.enter
r.diaplay
r.tally ;
6 B:METHODS.BLK

\ methods testing

register narf

regiater mod.narf .

: barf tally narf diaplay narif
narf 3 mod to mod.narf

9-21-85tgr

enter narf
diaplay mod.narf ;

