,,,

A SET OF FORTH WORDS LETS YOU DO NETWORK ANALYSIS

Jens Storjohann

Deutsches Elektronen-Synchrotron DESY
Notkestr. 85

D-2000 Hamburg 50

W.-Germany :

ABSTRACT

Most basic tasks in electrical network analysis are calculations of driving
point impedances of one-ports and the transfer functions of two-ports.

The program NAOMI (Netzwerkanalyse ohne Matrizeninversion / network
analysis without matrix inversion) uses a simple language to describe
components and networks and to immediately invoke suitable arithmetic
operations.

The following example calculates the admittance of a one-port built by
connecting two series RC-circuits in parallel.

60 HZ IS-FREQUENCY R1 C1 ++ RZ2 CZ2 ++ |l

This approach avoids in contrasf. to systems like SPICE numbering of
nodes and storing and inverting large matrices.

A Set of FORTH Words Lets You Do Network Analysis 1
' Stor johann, page 1 of 6

INTRODUCTION

Right at the beginning of any instruction in electrical network theory you
learn how to calculate the impedance of a one-port (or two-terminal
network) which consists of one-ports in series. You have to add their
impedances. Similarly you calculate the admittance of one-ports in paral-
lel as the sum of their admittances. '

Even quite complicated circuits can be built by connecting components or-
two-terminal subnetworks in parallel or series. Engineers use this
approach very often. But normally they work by symbolic manipulations
of rational functions and then evaluate them for the desired frequencies
. by hand or computer.

The problem itself would be treatable in "pocket-calculator style” if the
appropriate types of data and operations were implemented and could be
used simply.

Mast common network programs expect the numbers of nodes and the
components connecting them as input. The user chooses the results to be
displayed from a set of options. The program does a topological analysis
of the network and calculates a complete description (state vector) of
the network behavior by some kind of matrix analysis. '

This approach has several disadvantages: The user has no access to the
internal working of the program. Therefore he has to be content with the -
limited set of options included in the program. The topological analysis is
done even in cases where the structure could be recognized easily by
inspection. Then a lot of state variables are calculated only to boil them
down to one single quantity like input current or output voltage. This
approach is quite universal: You one can calculate even the time behavior
of nonlinear circuits, but you have to pay a penalty in the form of large
memory requirements, slow execution, and inflexibility.

. The engineer, especially in power engineering, has to do a lot of simple AC
analysis of passive linear circuits. He does not want to pay the price for
these universal programs. NAOMI was developped with these simple
applications in mind. :

HOW NAOMI WORKS

The input language ist the first thing you learn about a network arialysis
program. [decided to let Forth words be the elements of the input

A Set of FORTH Words Lets You Do Network Analysis 2

Storjohann, page 2 of 6

Baoa oo

language. They can be invoked interactively and exchange data mainly via
the stack: To have all "electrotechnical items” represented by tagged
data. turned out to be quite comfortable. So a capacitor is represented
by a floating point number and a 16-bit number as a tag on top of:it. A
calculated impedance is represented as a floating point complex number
and a tag. |

The most important high level words are ++ ,ll ; and //. The word ++ ("in
series’) takes any two one-ports from the stack and leaves the impedance
of their series connection as a complex number plus a tag. If the
operator’s ++ operands are admittances their reciprocal values will be
calculated. If they are components like inductors their impedances will be
calculated by multiplication with jw. The appropriate decisions how to
calculate the impedance as the required standard representation is done
in the word ->Z ("make impedance’). It expects to find any one-port i.e. a
resistor, capacitor, inductor, impedance, or admittance on stack and
leaves its impedance with the appropriate tag. An item of another type
e.g. a voltage would cause an error message and execute QUIT. The total
impedance is calculated by adding two complex numbers.

The operation of Il ("in parallel”) is analogous to ++. The one-ports on
stack are converted to admittances by the word ->Y ("make admittance")
first and then added.

The word // is used to calculate the transfer function of simple voltage
dividers and ladder networks which can be looked upon as chained
dividers. It accepts a voltage and two one-ports and leaves the divided:
voltage and the output admittance of the divider. An example is shown.
on the application screen.

The user has never to worry whether the impedance or admittance of e.g.
an inductor, which should be connected to another circuit, has been
calculated. The tagging guarantees that the necessary transformations to
suitable representations can be invoked transparently. That means he can
always think as if he has real two-terminal networks on the stack which he
can solder together with operators like ++. -

FURTHER DETAILS

The internal calculations are done with floating point numbers. In my
Forth system from Computer One (similar to LMI Forth) running on the
Sinclair QL an extensive set of floating point words is implemented, and
even the graphics facilities use them.

A Set of FORTH Words Lets You Do Network Analysis 3

Storjohann, page 3 of 6

This program should be usable almost without any knowledge of Forth.
Therefore I decided to restrict the '"mormal” input of parameters to the
form <integer> <unit> i.e. 100 KHZ. The operators for the units like HZ,
KHZ, MEGAHZ take an integer number from the stack, change it to floating
point format and put a tag on the stack. This approach avoids all
complications of the input of floating point nurmbers. The user can use
NAOMI words inside colon definitions almost without restrictions.-
QOtherwise one would have had to introduce concepts like state-smart,
execute-only or more difficult Forth words like [COMPILE].

The set of floating point words was supplemented with a few words with
obvious meanings like F. and F>R. A set of words for floating point
complex numbers was written in high level using the floating point words.
They are prefixed with FC like in FC*. Their implementations are not listed

here.

For ease of use the defining word COMPONENT was made to work like a
glorified CONSTANT. In compiling it takes a single tagged floating point
number ‘from the stack. The words defined by it then puts this

“component” on stack.

The whole systern including the complex floating point words occupies
about two kilobytes. Extensive use is made of the return stack to store

intermediate results.

REMARKS AND FUTURE

Work is under way to implement operations on two-ports using their ABCD
matrices and further utilities like delta-wye transformations. My
experience showed me that the prospective users want a very extensive
system with lots of options already coded because they do not realize that-

Forth/NAOMI is easily extensible.

Before I wrote the Forth version I had already written NAOMI,. including
two-ports, in Fortran. There I imitated the Forth style by having a stack

in a named COMMON block.

Paul Penfield from MIT embedded a network description and .analysis
system MARTHA in an APL environment (see his article in R. W. Jensen and

" L. P. McNamee (eds.), Handbook of Circuit Analysis Languages and

Techniques; Prentice Hall, 1976). Both, MARTHA and NAOMI, work in a
similar spirit; but I hope that the advantages of the Forth approach will
make NAOMI more popular than her older distinguished, but heavyweight
sister MARTHA.

A Set of FORTH Words Lets You Do Network Analysis 4
Storjohann, page 4 of 6

’
Screen # 12
0 ¢ NAOMI Version 0.1 z" y" abcd""wrong x. jst10785)
1 ¢)
2 11 constant z" 99 constant y" 999 constant abcd”
3 1 constant ohm" 2 constant farad® 3 constant henry"
4 4 constant volt" S constant ampere"
S & constant hertz" 7 constant second” 8 constant ratio®
& ¢ ."wrong ." wrong type on stack" ;
7 ¢ %. C print routine for tagged data: x -)
8 case z" of fc. ." Ohm" endof y" of fc. ." 8" endof
3 abzd" of fco. foc. foo fec. " ABCD" endof
10 ohmn" of f. ." Ohm" endof farad" of f. " F" endof
11 henry" of f. R endof volt® of fc. " V" endof
12 ampere” of fc. ." A" endof hertz" of f. ." Hz" endof
3 second” of f. " s endof ratio" of fo. endof
14 ." no legal tag found" quit
© 15 endcase ; -2
Screen # 13
0 (NAOMI VERSION O.1: units: ohm kohm ... ma jst10’8%)
1 ¢ Sunit> 2 n - fn tag or “unit> 1 n - fO fn tag)
2 : ohm float ohm" ;7 * kohm float kilo ohmn" j
3 : megachm float mega chm" ;
4 : f float farad" 7 = mf float milli farad" ;
S : myf fleoat mikro farad" ; : nhf float nano farad”
6 : pf float pico farad" H
7 = h float henry" H t mh float milli henry" j;
8 : myh float mikro henry" H
3 : h=z float hertz"” ; t khz float kilo hertz® j
10 : megahz flcocat mega hertz" ; :t ghz float giga hertz" ;
11 : v float O float volt" ; : kv float kilo O float volt® ;
12 = mv float milli O float volt"™ ;
13 = a float O float ampere" ; : ka float kilo © float ampere” ;
14 : ma float milli O float ampere" ;

Screen # 14

0 ¢ NAOMI Version 0.1: omega is—frequency jomf ... jst10785)
1 < 23
2 fvariable omega

2 f# 314.1592 omega f! (omega preset to European line fregquency)
4 : is-frequency (fn tag -)

S hertz" = 1if f# 6.283184 fX omega f!

& else ."wrong quit

7 then j;

8 : jomf ¢ fn — fO fn)

9 omega f@ f¥ O float fswap ;
10 = 1/jomf ¢ fn — fO fn)
11 -1 float fswap omega f@ fx f/ O float fswap ;

2 : component (loading: fn tag - ; executing: - fn tag)
3 create [f#bytes 2/ 2+ 1 literal 1 do , 1 cop
14 does> dup 1 - swap [f#bytes 1 literal +
15 do 1 @ -2 +loop ; -

Storjohann, page 5 of 6

ok

Screen # 15

O ¢ Naomi Version 01: ->z ->y jst10785)
1 ¢ =->z "make impedance® ->y "make admittance” ,)
2 : =>z (any tagged one—port — impedance tag)

3 case = of ¢ done) endof

4 y" of fcl/z endof

S farad" of 1/jomf endof

6 henry" of jomf endof

7 ohm" of O float endof

8 -"wrong quit endcase z" j

9 : ->y (any tagged one—port — admittance tag)
10 case y" of (done) endof
11 z" of f-i/z endof
12 farad® of jomf endof

. 13 henry" of 1/jomf endof

14 chm" of 1 float fswap f/ 0 float endof

15 -"wrong quit endc-ase y" -=>

Screen # 16

0 ¢ NAOMI Version 0.1: ++ !} 7/ jst10’83)
1«)
2 1 ++ ¢ connects two one—ports in series: lport 1port — 1port)
3 —>z draop fcd>r -2z drop fcr> fo+ z"

4 : i1 (connects two one—ports in parallel: 1lport 1port - 1lport)
S ~>y drop foc>r =3y drop fcr> feo+ y"

& // (voltage divider: voltage 1pa 1pb - div.-volt. 1paiilpb)
7 (The divided veoltage and the admittance seen from the)
8 ¢ output of the divider is left on stack. b
9 —*y drop fc>r ->y drop fcdup ford>
10 fc+ fcdup fcd>r fc/ fcd>r wvolt" =

11 if fcr> foX votlt®
12 else for> fcr> ."wrong quit

13 then fcr> y" ;
14

15

Screen # 18

0 ¢ NAOMI Version 0O.1: application program Jjst10’85)
10 kohm component ri
S kohm component rZ
10 myf component ci
9 nyf component c2
one-port vi cl {1 r2 c2 (i ++
runl 20 10 do

i khz is—-frequency i khz x.

SLOED\JU\UI#OJM'-‘
[I 1]

ohe—port o " x. cr
loop ;
: divider (ladder network)

11 1 vrlcl // 2 ++ c2 // ;

12z vun2 11 1 do

13 i khz is—frequency i khz x.

14 divider ." " drop fdrop fdrop x. cr

‘ iS5 loop
ok

Storjohann, page 6 of 6

