FORTH LANGUAGE EXTENSION FOR CONTROLLING INTERACTIVE
JOBS ON OTHER MACHINES

(Paper submitted to EuroFORML Conference, Stettenfels Castle,
Federal Republic of Germany, QOctober 25-27, 1980G.

David K Walker
Virtual Walker & Walker
Fostboke 68, N-5084 Tertnes, NORWAY.

ABSTRACT

f Forth apolicstion on an IBM PC/XT is described for (1) collecting, editing and generating input for
a large model of the Norwecian economy used by the MNorweqiar Bevernsent, (2) tramsferring this
inforeztion to a eaintrame, and {I) running interactive jobs which check the input, process it further
and cend 1t on to another e2inframe where the econosic model equationc are <olved and result tables
are writter, The application eaulates a person operating a computer teraminal., Forth technigues
tllustrated include a finite state deccription language extencion for controlling general interactive
jobe on cther mathinec, Anti:?;ated turther developeents of this concept include controlling and
logoing the entire model solution procesc on several sachinecs.

The work reported on here, partly completed and partly still
in development, suggests powerful Forth language extensions
using the +finite cstate machine concept (see for instance
t andau, 1982) which seem likely to be particularly helpful in

communications applications.

The Norwegian Government has for a quarter of a century used
large computer models of the economy, particularly the MODIS
model (for MOdel of DISaggregated type), as decision models in
"what 1f" analyses to set market parameters such as taxes and
subsidies, the exchange rate for the Norwegian currency, and
total government expenditure. On many occasions the models
have been used for centralized wage bargaining in which the
Government as a third party has been active 1in using the
models to negotiate packages involving joint taxation and wage
rate concessione. The main characteristic of this decision
process, compared with similar methods used in the USA (by the
Congressional Office of the Budget), Canada, France, and
Holland, is the maturity of the application and the extent to
which 1t has been relied upon by the Norwegian Minister of
Finance and the rest of the Cabinet in making quantitative

economic decisions.

With changing machine types and the general move towards more
interactive systems with improved turn-around times, and with
the particular aim of picking up errors earlier in the model

solution process, a microcomputer application in Forth has
been installed for

collecting, editing and generating input for MODIS

transferring this information to a mainframe over a 9600
baud leased voice-grade link, and

running interactive jobs which: check the input, process it
further and send it on to another mainframe where the
economic model equations are set up and solved as
previously, and result tables are written.

This development is the first step in renewing the computer
methods used +for MODIS. The microcomputer program will be
able to play a role in coordinating parallel use of new and
old model implementations, to test the new implementations on
new machines using identical input data.

The microcomputer application can be modified and recompiled
to control interactive jobs on any machine to which it can be
connected by RS-232C interface, using a special-purpose
lénguage which has been implemented in its first rudimentary
but reliable version, as an extension of Forth. The sections
following discuss the general goals, reasons why Forth is
preferable for such applications, and the extensions which are
appropriate. Plans for further development are discussed with
special reference to guarantees of reliability.

Conventional software for using microcomputers as workstations
connected to mainframes supports two modes of interaction
between machines,

dumb terminal emulation, and

downloading and uploading of Ffiles consisting of ASCII
strings.

N

(In connection with the second, batch jobs can sometimes be
submitted and their results viewed as files.) Usually coded
in assembly 1language, software of this type 1is generally
unable to provide machine—-machine interactions related to
specific final wuser applications. Such communications are
conventionally regarded as a systems programming topic. The
data objecte dealt with are the kinds of data object that
operating systems know about: terminals, files, job queues and
sC On.

This conclusion holds also for more advanced communications
scftware used 1in laocal area networks and wide area networks:
all communications is handled at the operating system level.
Many would sav that this is where it should be handled. that
things should be factored out that way. The operating svstem,
it i normally argued. should provide facilities of this kind
to user processes. Why should the application have to include
drivers for the communications ports? But we need to
distinguish between responsibility for driving the ports and
the high level protocols, as in the lavered 0SI model (see for
instance Witt, 1983). As the lavered 0SI model recognizes,
not only operating systems but alsc applications have to take
account of things like deadlocks due to both parties waiting
for the other to speak first. The main logical issues of
communication have to be faced at all layers, including the
applications laver. And so we need to ask: what software
tools do we have to meet this challenge?

There is an almost total absence of interactive communications
csoftware at the applications 1level. Final users prefer
interactive programs for data retrieval, spreadsheets, and
similar applications. They would alsoc like to be able to
interact with communications software. It 1is useful to be
able to start a program which will run an interactive program
on another machine in an intelligent way and report back on
selected events, as in the application described in this
paper, or perhapes to run two interactive programs on two
different machines and pipeline the output from one to the
other. This sort of thing is rarely done because of the
absence of adequate communications protocols at the
application level in the 0OSI model. This absence leads to
applications communicating by reading each other’s files.
Thie 1is the weakest and most error—prone kind of
communications protocol that can be imagined, and it normally
requires human intervention and checking to work, acs we know

from experience with MODIS.

Users want to do the things suggested above. Alsoc, there
exicst interactive programs on mainframes which do not produce
results on files suitable for downloading. Users would 1like
interfaces between interactive programs on a variety of
machines, which they are unable to modify themselves.

It ic perhaps easy to imagine that a microcomputer emulating a
smart terminal might simply take a disk copy of the dialog.
which might be edited later by hand and uplocaded to a
different program on a different machine. There are many
pitfalls here, however. The second machine may not want its
input in that format. More fundamentally., a terminal
emulating program needs to use a protocol such as XON/XOFF to
slow down the mainframe while the microcomputer stores things
on disk {(or anywhere), and it will not be able to respond
naturally at 9600 baud in a dialog if it tries to do this.
Ideally, the microcomputer should act as an intermediary and
buffer at the level of the interactive application.

Forth_ve. other methods for communications applications

Assume +for the moment that we are going to use assembly
language, conventional high level languages such as C or BCFL,
or new classical languages such as OCCAM (May & Taylor, 1983)
-~ which i1s specifically slanted towards communications. The
absence of anything corresponding to Forth’s text interpreter
(Ting. 1980) makee life very difficult when implementing and
testing the protocecl in a communications application. Thics is
perhaps not very important in small applications, but in large
applications taking a variety of user needs and user-level
exceptions into account it is an immense stumbling bloci.

Testing communications software using a top down testing
approach with "stubs" instead of the complete code in the
classical way (see for instance Myers, 1979) is not practical,
as necessary i1nput <for the program to function is not
generated. Furthermore, it does not help with the essential
task of investigating the timing of messages between machines.
Bottom—up testing is difficult with conventional methods
because there is an excessive number of memory variables to be
initialized correctly, by comparison with a Forth program.
Forth programs run in a simpler context. which the system
deveioper can initialize manually for bottom—up testing.

Forth s bottom—up interactive support Ffor testing allows most
of the necessary test input to be placed on the data stack
before trying out selected words, and this allows experiments
with timing. Correct hardware behaviour can also be verified
by such testing. Individual modules can be constructed with a
small number of possible program execution paths, and their
carrect function and stability can therefore be verified by
experiment. Furthermore, at the crucial point when the whole
code is first tried out, a function key breaking to Forth's
text interpreter (Ting. 1980) allows us to investigate buffers
and state variables, make alterations to both program and
data, and re-run parts of the code.

While some of these facilities are available in machine code
monitore and high level debugging monitors, it is normal for a
monitor to interfere with i/o for keyboard and screen. Using
Forth™ s text interpreter instead, such interference is well
documented and can be modified it necessary.

Forth 1is apparently unigque 1in providing the multi-level
testing environment which is essential for implementing and
testing communications applications 1in high level code. Most
communicaticns software has until now been written in assembly
language. KRegardless of whether or not a good macro—assembler
has been used, & DDT-1like debugging environment is not
particularly helpful for testing large amounts of
communications code. Single or multi-stepping ignores timing
constrainte in communications. It is in any case
time-consuming in large programs. Setting breakpoints,
registers and memory locations for longer test runs is less
flexible and slower than using Forth’s text interpreter, where
for example buffers can be cleaned out and reset using
tailormade commands.

Forth’s multi-level structure also allows time-critical and
machine—-dependent modulecs to be written in assembly language.
Forth™ s standardization and practical portability combine with
the above features to make it the ideal communications
language for developing applications.

Modifying Forth towards communications

In the application described 1in this paper, five different
kinds of practical extension were made. Three of these are
abvious practical tools rather than language extensions, and

wm

they are listed here without further comment:

machine code primitives for sending bytes and stringe
(using the XON/XOFF ptrotocol), and for receiving bytes

machine code primitives for receiving strings in a buffer
(using the XON/XOFF protocol)

buffer housekeeping (clear, reset. inspect, copy text to
buffer).

The two remaining developments are concerned with

new definitions specifying data structures and actions for
sending particular etrings and monitoring answers
received (regarding timing and appropriateness), and

finite state machine concepts (defined later, alternatively
known as the finite state description method, see
Landau, 1982) for wuse as language flow control
structures during machine—machine dialog.

Both the above were implemented using the <BUILDS DOES>
structure of FIG-Forth. They can presumably be modified to
the Forth-8Z Standard.

As implemented., these two extensions are both within the
exicting possibilities of the Forth language/operating system.
However, the last extension is of further interest because it
was used largely instead of the usual control structures
IF-ELSE-THEN and BEGIN-WHILE-REPEAT. (DO loops and
BEGIN~UNTIL were generally not used.)

That is. the lacst extension represents a valuable alternative
in (what would otherwise have been) large slabs of application
code, compared with major control structures commonly used in
Forth. It may be regarded as a generalization of both the
CASE-structure and Forth’s address interpreter (Ting, 1980).

The finite state machine concept is the theoretical basis for
recent advanced work on reliability in communications. Gouda
(1984) proves necessary and sufficient conditions for
perfectly reliable communications between two communicating
finite state wmachines. In connection with the new
implementation of MODIS, an attempt is being made to use

Gouda®s criteria for verifying reliable communications
protocols between the processes arising in solving the model,
at the Central Bureau of Statistics in Oslo.

Finite state machines may be defined in several ways. Here it
is convenient to present them as alternatives to the usual
block—oriented control structures such as IF-ELSE-THEN, and
BEGIN-WHILE-REFEAT., functioning as described below. Forth's
ability +to address individual named modules to be executed
later allows us to construct generalized switching and looping
systems, which are driven by a small number of state variables
and described by easily readable tables (see Landau, 1982). A
finite state machine can then be defined as consisting of

a table of names or addresses of new modules which can be
erecuted, pointed to by the elements of

another table selecting actions to be performed, based on
the combined wvalues of a limited number of state
variables (usually two), and

a driving mechanism which loops repeatedly, using the two
tables to execute a sequence of actions based on the
state variable values as these change.

This scheme is very flexible, as any executed module (Forth
word) may alter the values of the state variables and thus the
+low of control. In general, reliability 1is obtained by
strictly limiting the number of state variables and the number
of modules which may alter their values. When this is done,
the possible side effects which execution of a module can
generate are in still principle dramatic (and potentially
useful), but in practice nearly all poscsible events are neatly
documented in the tables. Reliability can therefore be

verified by exercising the limited number of possible program
paths inside each separate module (Forth word).

While finite state machines are mentioned often 1in the
computer science literature (particularly in connection with
evaluation of parsed expressions), it is generally stated that
such tablecs will be too 1large for the method to be of any
practical use on a large scale, due to the number of possible
states generated as elements of the Cartesian product of the
sets of values which can be taken on by the state variables.
This 1is wrong, however, as the writer has verified by

constructing and selling a fully operational multi-user
invoice, order and inventory system based to a large extent on
finite state machine principles. QGuite simple modifications
solve the sirze problem usually referred to, while retaining
almost all the benefits (particularly reliability). In a
communicating finite state machine there is in any case only a
small number of possible states, and the size problem can in
any case be ignored.

There are several alternative ways of implementing Ffinite
state machines in Forth, reminiscent of (and partly derived
from) the competition in the journal Forth Dimensions for the
CASE-statement. So far in the M™MODIS input project described
here. a simple method has been used, in which the first table
is defined by a CASE-statement simply 1listing Forth words to
be selected and executed according to the value of a single
state variable. These are not however executed in natural
sequence. The state variable is normally given a new value by
each listed word in the CASE-statement when it is executed,
fixed at the time the word is compiled.

This would give a fixed sequence, except for the fact that the
single state variable is modified in some of the listed wordes,
at run time, according toc events.

In this simple implementation, the second table mentioned in
the definition above of a finite state machine consists of
data elements compiled into the individual Forth words named
in the firet table, so that it is spread between these words
rather than collected in one Forth definition. Since these
words are themselves defined on a couple of screens in single
lines, the scurce code doecs have a readable table structure,
as shown later in Figure 2.

In Figure 1, the Forth screen shown corresponds to the first
table in the definition of a finite state machine.

The next two screens in Figures 2 and 3 correspond to the
second table. (These screens refer to short words whose
definitions are not shown here, related to the application.)

Figure 1

(branch for outer shell dkw-08/16/85)
CASE: c-ACTION (n ——) « -1 exit, DON°T CALL)
tty (0 TTY, password)
send-FI-ST (1)
send-ESC (2 login entry)
send-5-5-R (3)
send—-N—-N { 4) send-FERD ¢ S)
send-LOGOUT { &) INN 4 7)
Name ¢ 8) TRE (9)
Struct € 10) FPred (11)
Data { 12) Open « 13)
Eval (14) Dutecst « 15)
Cards (16) De—+fi « 17)
Filename (18) tLesefil (19)
Figure 2
(sending and receiving strings 1 dkw—-08/16/85)

(defining questions, answers to be tested for...)
(...and new state variable settings afterwards)

(old new <-STATES)

(state sends receives max ?cr)
(0 1 olav prompt 100 cr SEND-STRING send-PASSWORD
(1) 17 FI-ST file: 20 cr SEND-STRING send-FI-ST
(2) 3 esc login: 100 00 SEND-STRING send—-ESC
«3) Q s—s-b password: 10 cr SEND-STRING send-S5-5-B
(4) 13 n—n direlktiv 150 cr SEND-STRING send-N-N
(3) & ferd prompt 100 cr SEND-STRING send-FERD
t 6) -1 logout ok—out: S50 cr SEND-STRING send-LOGOUT

Figure 4 contains elaborations of three waords in Figure 3
which illustrate the <flexibility of the methoed, to send a
variable string for transferring data.

Figure 3

(sending and receiving strings 2

dkw—-08/16/85)

¢ 7) 8 inn: enavn?: SO0 cr SEND-STRING INN

(8) 9 COMBUF valg?: 130 cr SEND-STRING send—Name

(2) 10 tre: tperiode: 50 cr SEND-STRING TRE

{ 10) 11 COMBUF engere: 1530 cr SEND-STRING send-Struct

(12) 12 COMBUF odevie: 150 cr SEND-STRING send-Fred

(13) 18 open: endres: 150 cr SEND-STRING Open

(14) 15 eval: enavn?: 150 cr SEND-STRING Eval

€ 15) 16 ditecst: ltat: 130 c¢r SEND-STRING Dxtest

(16) -1 act: direktiv 150 cr SEND-STRING Cards

(17) 4 de-fi: prompt 50 cr SEND-STRING De—f1i

(18) 19 k: leces: 150 cr SEND-STRING Filename

(19) S null: direktiv 130 cr SEND-STRING Lesefil
Figure 4

(Elaborations, sending and receiving states dkw—08/146/85)

2 name 10 —->Bufftext send—Name 3

Name emptybuf N-FILE d:

: Struct emptybuf 1 S->D ->Buffnum (frequency yearly)
Y-FILE 1 year @ S->D ->Buffnum (1st year)
O vear B year @ S->D ->Buffnum (final year)

send—-5Struct 3

Fred emptybuf
P-FILE O pred 8 1+ 1 DO I pred € S->D ->Buffnum LOOF
send-Fred i

The screen in Figure S contains a simple version of the driver
referred to in the finite state machine definition.

Figures 2 and 3 utilize the
(implemented using the defining
not shown). SEND-STRING
receiving actions of a
new value for the

The single line definitions in
language extension SEND~-STRING
words <BUILDS and DOES in FIG-Forth,
to specify sending and
(defined elsewhere),

allaws us

general nature and a

10

Figure 5

(outer shell communications FD dkw-07/31/8S
VARIABLE o-state
: test? o-cstate @ 18 = test @ 0= AND IF -1 state ! ENDIF 3

<

T com BEGIN state 8 -1 >
WHILE state € o—state !
state 8 c—-ACTION (..branch to next action
TTYk (..lock for F3 function key, —-> TTY
test? (..switch testing or production

REFEAT please-send i (..to AVOID LOCKING THE PORT !

cOom INIT-COM1 2 c=tate ! (try to LOGIN) com s

state variable (i.e. the next action toc be taken 1in the
sequence if not aver—ridden). While the SEND-STRING concept
approaches the concept o©of a node in the graph of a
communicating finite state machine as defined by Gouda (1984),
it ie not identical with it and more work remains to be done
in this direction. SEND-STRING is relatively simple-minded.
It sends a string several times until it either does or does
not receive a specified appropriate string as a response. I+
it does, it sets the state variable to its usual new value,
and returnc to the finite state machine driver (Figure 3). If
not, it sets a different state variable value leading the
finite state machine to brealk to an exception strategy.

At present this consists of telling the operator to 1log out
and restart the whole machine—-machine sequence, but as noted
in the next section, a major point of interest is to develop
more subtle exception strategies which will allow the process
to try other possibilities to get the dialog going again.

It is planned to extend this scheme to use a Z2-way table based
on two state variables, one of which (as previously) indicates
the current Forth word in the CASE: statement (Figure 1) .being
erxecuted, while the other identifies a variety of responses
from the other machine. To conform with Gouda’s ((1984)
definitione, the elementary concept of action will either send
or receive a message but not both (SEND-STRING sends and waits

11

to receive a predetermined answer). This will enable the
finite state machine to specify reactions to many alternative
answers (one of which 1is a residual category). These plans
are alsoc based on the writer®s experience using 2-way tables
to handle user interactions, in the multi-user order, invoice
and inventory esystem referred to earlier.

The benefit to be obtained from following Gouda®s
graph—theoretic definitions is that it 1is then possible in
principle <(and, we hope, in practice) to prove perfect
reliability for some particular communications protocol
between the various model solution processes, using his
results, in the sense that the communication process cannot
then deadlock or transfer data incorrectly without correction
following. In practice, then, any communications failure will
show itself acs either an error report from the communications
process, oOr a visible failure in the communications process
itself. This is an ecssential step to allow decentralization
of large applications.

References

GOuUDA, M.G. (1984) Closed Covers: To verify progress for
communicating finite state machines. IEEE Trancsactions
on Software Engineering, Vol SE-10, No. &6, November
1984, pp.8446—-855.

LANDAU, J.V. (1982) Hardware-oriented state-description
techniques. Ch. 16 in D.F. Stout, ed., Microprocessor
Applications Handbook, McGraw—-Hill, 1982.

MAY, D. & TAYLOR, K. (1983) O0OCCAM. INMOS Ltd,
Whitefriars, Lewins Mead, Bristol, England.

MYERS, G.Jd. ((1979) The art of scoftware testing. Wiley,
N.Y.

TING, C.H. (1980) Systems guide to fig-Forth. Offete
Enterpricses. Available from Mountain View Fress,

California.

WITT, M. (1983) An introduction to layered protocols.
BYTE, September 1983, pp. 385-398.

12

