
RTDF: A REAL-TIME FORTH SYSTEM INCLUDING MULTITASKING

H. E. R. WI JNANDS and P .M . BRUI JN

Control Engineering Laboratory
D epartment o f El ectr ica l Eg in eer i n g

D elft Un i v e r s ity o f Tech n ol o g y

2600 GA D elft , Th e N etherl a nd s

A&st r a = t : Th i s p a p e r o utlines a real-time F ort h sy stem ,
named RT DF'. RTDF is intended for use as a development too'
for s ingle p ro - e ssor control systems. Due t o t h e g e n e r a '
language con cepts applied, it h a s a ls o b e en p r o v e d u s e f u l
for discrete system simulation and other c oncu r r e nt p r o gr a m ­
ming n e e d s .

RTDF offers multiple task declaration, initiation and prio­
rity as s ignment. Syn chronization and communication between
tasks ca n be performed by the u se of semaphores an d m on i­
tors. Real-time facilities include the general use of timers
and delay statements. An application running o n a Z 8 0 a t 4
MHz may u t i l i z e a 5 ms s a mp l e t i me , maintaining an efficien­
cy better than 950 for any number of tasks in a ny s t a t e .

Eepvords: Proce s s contro l, Discr e te sy ste m simulation,
Real-time programming, Concurrency, Multitasking.

1. INTRODUCTION

Microcomputers a re inc r easingly being used to im p le ment
algorithms f or control system applications. Most g e n e r a l
purpose control systems employ the standar d PID algorithm.
To investigate and realize m ore co m plex con tr oilers, th e
control engineer needs an interactive and flexible tool for
real-time programming. Such a real-time system requires:

multitasking facilities

T he pro g ram may b e structured as a number of processes,
tasks, wh ich th em s e lves a re sequential, bu t ar e
executed p ar a llel. To communicate orderly t he t a sk s
should be able to share mutual excluded data. A met h o d
must be provided to s ynch r o n i ze t a s k s .

a determined time response to events.

W I JNANDS AIID BR JIN: A R E AL- TIME F O RT H SY STEM p gge 2

A task should be able to react immediately to ev en t s ,
s uch a s the reaching of a specific time or the s ign a­
l ing o f some other task or I/O port. Tn e p r ogr am m a y
specify a t w h ich time (absolute) an action starts, or
may s p ecify a delay (relative) before an action t ak e s
p lace. In b oth c a ses a hardware provision sh ould be
available to measure time.

D ue to th e m any a d v antageous properties F ort h h a s been
chosen as implementation environment; spec ial attention has
been gi ven to the efficiency and portability of the re su l­
t i n g c o d e .

2. MULTITASKING FACILITIES

The r e a l-.ime Forth system RTDF suppor ts mu ltitasking. To
simulate p ar a llel processes on a one processor system, th e
execution of ta sk s i n structions is interleaved w i th th e
instructions of a ll other tasks. Thi s simulation is c om ­
pletely transparent to users: there are no special require­
ments for the use of stacks or program loops; a t a sk may be
structured just like ary other definition.

TASK DECLARATION AND INITIATION

The syntax for the declaration of a task is:

:TASK tas k. name r ou t i ne-text

E xample: :T AS K w at c h dog BEG IN no ise @ U NT IL b ark

To in itiate th e t ask , th e n ame is s im pl y wr it ten (e . g.
w atchdog). Tasks can be initiated from the console, sou r c e
text or by compiled code. Whe n the task name is encountered
the task can be executed; at th e same time the calling pro­
gram can also continue to execute. A ct ual execution depends
on it s pr io r ity with respect to the pr io r ities of o th er
a ct i v e t a sk s .

A program that references an executing task will continue to
execute, bu t the referenced task is initiated only if it is
not already in execution: tasks may not be used recursively.
The s c heduler will keep track of the number of re fe rences:
i f a t ask i s r ef er en c e d N t i m e s i t wi l l sequen t i al l y execu t e
N t i m e s.

Under the condition of sufficient memory resource, any num­
ber of tasks can be defined or executed at any time.

W I JNANDS AND B RU IN : A REA L- TIME F O RT H SY STE M ps. ge 3

E xampl e :

(define the tasks): TASK c o n t r o l l e r
: TASK o p e r a t o r
: TASK d i s p l a y

c ont r o l l e r
o pera t o r
d isp l a y

• • •

• • •)

(star t tne tasks)

PRIORITIES

Priority car. be assigned to a task by:

(priority) PRIO RITY tas k. name-list

Example: 1 00 P RI ORITY w atchdog

Active ta sks with equal priority are executed in
a nd a c tive ta s ks w ith the highest prior ity a r e
f i r s t ,
The pr 'ority va l u e (priority) is an integer in th e ran ge
from 0 to 255. Tasks have a default priority o f 1 0 . Th e
priority 0 ha s a sp ecial meaning to th e sch ed uler : the
correspondir g task will be aborted if execution is att e mp­
ted .

SEMAPHORES

Semaphores in RTDF are modeled after the semaphores in Algol
68.

Semaphor es a r e d e c l ar e d b e f o r e u s e :

SEMA s e m a p ho r e . name

allowed and com pi l er secured op e r a t o r s on a
are WAIT, SIGNAL, SETSEMA and READSEMA.

The on l y
s emaphor e

Usage :

(semava l u e)

semaphor e . n a me
semaphore . n a me
semaphor e. name
semaphor e. name

WAIT
SIGNAL
SETSEMA
READSEMA (semavalue)

W AIT in spects th e i n teger variable c ont ained w ithi n th e
semaphore. If its value is positive it is decreased by one.
If, o n th e oth er h a nd , it i s z ero the task is su sp ended
temporarily until the variable becomes positive. It i s then
d ecr e a s e d b y o n e a n d t h e t a s k i s awa k e n e d .

SIGNAL increments th e v alue of the integer v ar i able co n­
tained within the semaphor e. SIGNAL can result in the awake­

WIJNANDS A N D B R U I N : A REAL-TIME F OR T H SY STE M page 4

ning of other temporarily suspended tasks,

The default value of the s emaphor e i s o n e . Th e v a l u e c an b e
altered by SETSEMA and read by READSEMA.

MONITORS

The m ain purpose of the monitors is to facilitate pr o g ram­
ming in a multitasking environment. A monitor in RTDF is a
declared par t of the program in which only one task may be
active at run time. Thi s task must leave the monitor before
any other task is allowed to e nt e r .

Decla r a t i o n :

:MONITOR mo n i tor'. name progr am MONITOR;

where pr o g r am c a n b e a n y s e q u en c e of d e clarations (co l o n
definitions, task definitions, etc •) .

Example 1 :
:MONITOR con trol. parameters

0 V AL p , d , i
g et . p a r a m e te r s p d
put.parameters T O i TO d TO p

MONITOR;

The moment a task fetches the parameters p, d , a n d i ,
the security exists that none of these par ameters will
b e c h a n g e d b y o t h er t a sk s .

Example 2 :

The f o llowing illustration of the use of monitors is a
solution of a classical concurrent problem, " The B o u n ­
ded Buffer Problem".

One task is producing characters one at a t im e w h ile
another ta s k is con su m ing them one at a tim e . Th e
communication is done through a buffer which can hold a
fixed n u mber of characters. T he producer may a p p e n d
records into this buffer as long as it is not full. The
c onsumer ma y r e mo v e r e c o r d s as long as the buffer is
n ot e m p ty .

A solution using monitors in the notation of its inven­
t o r Br i n c h Ha n s e n i n DP (1) :

monitor X is
BUFFER: ar ray (0 . . 9) o f C H AR
IN 5 OUT: I NTE G ER

WI JNANDS AND BRUIN: A REAL- TIME FORTH SYSTEM page 5

p roced ur e AP P END(E : i n CH A R);
when IN < OUT+10 : BUFFER(IN mod 10) := E ;
I N : = I N+1 ; e n d ;

end APPEND;

p roce d ur e RE i I OVE(E : o ut CHA R) ;
when OUT<IN : E := BUFFER(OUT mod 10);
OUT := OU T + 1 ; e n d ;

end REIIOVE

begin
I N : = 0 ; OU T : = 0 ;

end X

A similar solution in RTDF' is

:MONITOR getin/out.mon
0 VAL i n , out
0 VAR b u f f er 8 AL L OT

getin/out in ou t
MONITOR;

:MONiTOR append.mon
append

UNTILBEGIN get in/out 1 0 +
b uffer in 1 0 M OD + C !
1 i n +TO

MONITOR;

:MONITOR remove.mon
remove

BEGIN getin/out SWAP < UNTIL
b uffer out 10 MOD + C ©
1 ou t +T O

MONITOR;

A p r o c e s s c a l l t o "append" will add a ch ar a cter (the
o ne pr evious lef t on the d ata stack of th e calli n g
task) into the circular buffer if not full. A pr oces s
c al l t o "remove" w i l l take a character out o f th e
buffer i f not empty (it leaves it on the stack of th e
calling task). Any process calling "append" or " remove "
will b e p laced in queue if another process is alre ady
executing in the routine "append ir or »remove

3. REAL-TIME FACILITIES

DELAY STATEMENT

The d e lay statement can be used if the current task exec u­
tion has to stop for a specified time.

W I JNANDS AND BRi.'IN: A REAL- TII~JE FORTH SY S T E M page 6

Usage: (de lay . time) DE LAY

The d e lay st at ement will immediately place the t ask tha t
executes th i s statement into a waiting state for the speci­
fied time.

TIMERS

For r e al-time u se a d el a y statement can be used in m ost
current languages only. In a c l ass of applications this i s
unsatisfactory. It is often not the two instants of start of
c onsecutive ex e cution which will be separated by a per i o d,
but the end of one execution and the start of the next that
is d e s ' r e d .

To facilitate pro g ramming of correct in te rvals or cy cle
times timers may be used.

A timer is a data structure declared by:

TIMER tim er. name-list

Example: T IMiER t i m er1 , t i m e r 2 , t i m e r 3

Only 5 operators are allowed on a timer:

timer. name
t i mer . n a me
timer. name
t i mer . n a me
t i mer . n a me

SETTIMER
WAITTIMER
READTIMER (ti m er. value)
STOPTIMER
CONTTIMER

(timer. value)

SETTIMiER will assign the value, (ti m er. value), le ft on the
datastack, to th e timer structure. Whi le the calling task
can c o ntinue to ex ecu te the value of the t im e r w ill b e
decremented every elapsed time unit until zero.

W AITTIMER will take the current value of the timer and w ill
place the task executing this statement into a waiting state
for a time interval that corresponds to this value.

READTIMER returns the current value of the timer, STOP TIMER
s tops th e timer value to be decremented and CONTTIMER w ill
continue the decrementing.

Under the condition of sufficient memory resource any number
of t imers may be active at any moment. Th e e f ficiency with
numerous tim ers is high in RTDF since, in f act , o nly on e
timer is counting; all other timers have offsets to this one
timer. Administ. ation is only carried out at zero descend of
this one timer.

W I JNANDS AND B RU IN : A REA L- TIME F O RTH SY STE M p<Ee 7

E xampl e :

TliMER timer.pid

PID-contr oiler
BEGIN

20 timer .pid S ET TIMER

stimulate
c al c u l a t e

timer.pid WA ITTIMER
REPEAT

Although t he r o utines "calculate" and "stimulate" may
take s e v eral clock cycles, t he cy cle time of the con­
troller (20) is secured.

SOME REMARKS ON REAL-TIME RESPONSE

H igh speed real-time applications rely heavily on the d efi ­
n itions fo r task communication. Th i s communication can be
p er f o r m e d b y :

shar i n g d a t a

When t asks share data on the basis of monitored opera­
tors, a special mechanism is provided for the real-time

requirements o f tasks with high priority. Th i s m echa ­
nism is needed for the following situation:

If task A pr oce sses within a monitor it can be po st ­
poned b y an a c tivated task B with a h ighe r pr io r ity .
T hen w hen task B wants to enter the monitored r egi on ,
it will be placed in queue for later execution and task
A is allowed to process again. As soon as task A leaves
the m o n itor ta sk B is awakened and since task A ha s
lower priority task A will be suspended.
Wnen o nly two tasks are active no problems are encoun­
t ered. But w e ca n imagine a situation in which oth e r
tasks are ru nn i ng , ta s k A i s w ith i n th e m onit ored
region a n d B is waiting to enter the monitor. Wit h out
any special provisions all other active tasks will n ow
postpone task B, even if B has the highest priority' Of
course th is is undesirable. To o vercome this prob lem
the s cheduler will temporarily assign the priority of
task B to ta sk A a t the point in time that ta sk B
wishes to enter the monitor. Wh e n A l eaves the monitor
its or iginal priority is restored. In this way a task
awaiting t he com p l etion of a task of low er pr io r ity
will not wait any longer than its p riority a l l o w s . Th i s
scheme is v ita l for control sy st ems , w he re ta sk B
supplies the calculated controller signal and A changes
the parameters, as in adaptive control.

W IJNANDS AN D BRUI N : A REA L-TIM E F OR T H SYSTEM page 8

signaling by semaphores

Signaling takes place by semaphores. When a task has to
await a s e maphore or monitor, it w ill be placed in a
queue. Tasks awaiting a common entry are served in most
l anguages o n the basis of first in first ou t w ith o ut
their priorities considered, wh ich seems to be unfair •
In RTDF scheduling is done on the basis of priority.

If a signal is imposed on a semaphore th e sch ed uler
will immediately consider the consequences, Th i s means
that if a t ask w ith a suitable priority was aw ai ting
this semaphore the scheduler will, within microseconds,
perform a task switch.

ln RTD.' the time needed to respond to events lies in th e
m illisecond ra nge . Th e un it o f t ime in RTDF is the cycl e
time of a hardware-provided periodical interrupt and may b e
as small as 5 m s for a Z80-system running at 4 M H z . Th is
y ields a n e f ficiency of better than 95'o with any number of
tasks in any state.

5. PROGRAM DEVELOPMENT

Interrelated c onc urr ent processes are often non d eterminis­
tic . Correctly appearing concurrent pr ograms can have unex­
pected er r oneous results and of ten have hidden err ors . Al­
though the lan gu age concepts here pr e s ented m ay su pp or t
correct concurrent programs, the debugging phase is far more
evident than in the case of sequential programming.

The m ost important feature of Forth is its ability to deve­
lop i n teractively. It i s very important to pr es erve th is
programming e nvironment for concurr ent program deve lopment
a s we l l .

A large num ber of commands can be u sed for deve l o pment.
Their u se r equ i er s in some cases some k now ledge of th e
scheduler. D ev elopment too l s include commands t o di sp l ay
scheduler status, t he st ate of tasks, t im ers etc .. Inter­
rupts c an b e sim ula ted and a task switch can b e forc ed .
These commands are for development only. U sa g e in app lica­
t i o n p r o g r ams c a n e as i l y l e ad t o unpr ed i c t ab l e r e su l t s .

R TDF i s a complete Forth system. In ad d ition to the rea l­
time f ac ilities it includes a powerful floating-point pack­
a ge, a fi ling system integrated to the CP/M operating sy s­
ters. Sources can be made by CP/M editors. For fast develop­
ment, a Forth editor is available with a subset of Word Star
commands .

System dev elopment for embedded systems has been proved to
be fast. Special attention was given to the turnaround times

W I JNANDS AND B RU IN : A REA L- TIME FO RT H SYSTE M p<Ee 9

during dev elopment. T he sw itching between For th, C P/M and
editors take s seco nds . For th code is compiled in r ecor d
time. The compiling time of a complete new system, including
its kernel takes less than 5 minutes.

6. CURRENT STATE ANO FUTURE PLANS

W hile the first version is being used in a number of a ppl i­
cations, fu r ther developments include a multiprocessor sys­
tem for the control of a mobile robot and an expert sy s t em
for p r ocess control implemented on a VME-bus system.

7 . D I SCU S S I O N

The language concepts presented by RTDF will help to develop
correct concurrent programs. Their definitions are typically
Forth-like and therefore include all tne merits and demerits
embodied by this language.

Although Forth is commonly used in real-time control systems
there are no established Forth tools in this f'ield. (This is
no surprise since concurrency is still one of the topics of
todays computer language discussions.) The definitions h ere
p rese n t e d f or r e a ' -time and multitasking applications may
perhaps contribute toward a discussion on a structured deve­
lopment of these tools.

R efer en c e :

(1) B r i n c h H a n s e n , "Distributed Pr oc esses", Com m un . A ss .

Comput . M ac h . , v o l 2 1 , Oc t 1 9 7 4 .

