RTDF: A REAL-TIME FORTH SYSTEM INCLUDING MULTITASKING

H.E.R, WIJNANDS and P.M. BRUIJN

Control Engineering Laboratory
Department of Electrical Egineering
Delft University of Technology
2600 GA Delft, The Netherlands

Abstract: This ©paper outlines a real-time TForth system,
named RTDF, RTDF is intended for use as a development tool
fer single processor control systems. Due to the general
language concepts applied, it has also been proved useful

for discrete system simulation and other concurrent program-
ming needs.

RTIDY offers multiple task declaration, initiation and prio-
rity assignment. Synchronization and communication between
tasks can be performed by the use of semaphores and moni-
tors. Real-time facilities include the general use of timers
and delay statements. An application running on a Z80 at 4
MHz may utilize a 5 ms sample time, maintaining an efficien-
cy better than 85% for any number of tasks in any state.

Keywords: Process control, Discrete system simulation,
Real-time programming, Concurrency, Multitasking.

1. INTRODUCTION

Microcomputers are increasingly being used to implement
algorithms for control system applications. Most general
purpose control systems employ the standard PID algorithm.

To 1nvest1gate and realize more complex controllers, the
control engineer needs an interactive and flexible tool for
real-time programming. Such a real-time system requires:

- multitasking facilities

The program may be structured as a number of processes,
tasks, which themselves are sequential, but are
executed parallel. To communicate orderly the tasks
should be able to share mutual excluded data. A method
must be provided to synchronize tasks.

- a determined time response to events.

EEE G

WIJNANDS AND BRUIN: A REAL-TIME FORTH SYSTEM page 2

A task should be able to react immediately to events,
such as the reaching of a specific time or the signa-
ling of some other task or I/0 port. The program may
specify at which time (absolute) an action starts, or
may specify a delay (relative) before an action takes
place. In both cases a hardware provision should be
available to measure time.

Due to the many advantageous properties TFTorth has been
chosen as implementation environment; special attention has
been given to the efficiency and portability of the resul-
ting code.

2. MULTITASKING FACILITIES

The real-time Forth system RTDF supports multitasking. To
simulate parallel processes on a one processor system, the
execution of task s instructions is interleaved with the
instructions of all other tasks. This simulation is com-
pletely transparent to users: there are no special require-
ments for the use of stacks or program loops; a task may be
structured just like any other definition.

TASK DECLARATION AND INITIATION
The syntax for the declaration of a task is:
:TASK task.name routine-text
Example: :TASK watchdog BEGIN noise @ UNTIL bark ;

To initiate the task, the name is simply written (e.g.
watchdog). Tasks can be initiated from the console, source
text or by compiled code. When the task name is encountered
the task can be executed; at the same time the calling pro-
gram can also continue to execute. Actual execution depends
on its priority with respect to the priorities of other
active tasks.

A program that references an executing task will continue to
execute, but the referenced task is initiated only if it is
not already in execution: tasks may not be used recursively.
The scheduler will keep track of the number of references:
if a task 1is referenced N times it will sequentially execute
N times.

Under the condition of sufficient memory resource, any num-
ber of tasks can be defined or executed at any time.

WIJNANDS AND BRUIN: A REAL-TIME FORTH SYSTEM page 3
Example:
: TASK controller ... 3 (define the tasks)
:TASK operator e}
: TASK display e B
controller (start the tasks)
operator
display
PRIORITIES

Priority can be assigned to a task by:
(priority) PRIORITY task.name=-1list
Example: 100 PRIORITY watchdog

Active tasks with equal priority are executed in parallel
and active tasks with the highest priority are executed
first,

The priority wvalue (priority) is an integer in the range
from O to 255. Tasks have a default priority of 10. The
pricrity O has a special meaning to the scheduler: the
corresponding task will be aborted if execution is attemp-
ted,

SEMAPHORES

Semaphores in RTDF are modeled after the semaphores in Algol
68.

Semaphores are declared before use:
SEMA semaphore.,name

The only allowed and compiler secured operators on a
semaphore are WAIT, SIGNAL, SETSEMA and READSEMA.

Usage:
semaphore,name WAIT
semaphore.name SIGNAL
(semavalue) semaphore,name SETSEMA
semaphore,name READSEMA (semavalue)

WAIT inspects the integer variable contained within the
semaphore., If its value is positive it is decreased by one.
If, on the other hand, 1t is zero the task is suspended
temporarily until the variable becomes positive. It is then
decreased by one and the task is awakened.

SIGNAL increments the value of the integer variable con-
tained within the semaphore. SIGNAL can result in the awake-

WIJNANDS AND BRUIN: A REAL-TIME FORTH SYSTEM page L

ning of other temporarily suspended tasks.

The default value of the semaphore is one. The value can be
altered by SETSEMA and read by READSEMA.

MONITORS

The main purpose of the monitors is to facilitate program-
ming in a multitasking environment. A monitor in RTDF is a
declared part of the program in which only one task may be
active at run time., This task must leave the monitor before
any other task is allowed to enter.

Declaration:
:MONITOR monitor.name program MONITOR;

where program can be any sequence of declarations (colon
definitions, task definitions, etc.).

Example 1:
:MONITOR control.parameters
O VAL p , 4 , i
get.parameters p d 1 H
: put.parameters TO 1 TO d TO p 3
MONITOR;

The moment a task fetches the parameters p, d, and i,
the security exists that none of these parameters will
be changed by other tasks,.

Example 2:
The following illustration of the use of monitors is a
solution of a classical concurrent problem, "The Boun-
ded Buffer Problem".

One task is producing characters one at a time while

another task 1s consuming them one at a time. The
communication is done through a buffer which can hold a
fixed number of characters. The producer may append

records into this buffer as long as it is not full. The
consumer may remove records as long as the buffer 1is
not empty.

A solution using monitors in the notation of its irven-
tor Brinch Hansen in DP (1):

monitor X is
BUFFER: array(0..9) of CHAR
IN, OUT: INTEGER

WIJNANDS AND BRUIN: A REAL-TIME FORTH SYSTEM page 5
procedure APPEND(E:in CHAR);
when IN ¢ OUT+10 : BUFFER(IN mod 10) := Ej

IN := IN+1; end;
end APPEND;

procedure REMOVE(E: out CHAR);

when OUT{IN : E := BUFFER(OUT mod 10);

QUT := OUT + 13 end;
end REMOVE
begin

IN :=03 OUT := Oy
end X

A similar soluticn in RTDYT is:

:MONITOR getin/out.mon
0O VAL in , out
O VAR buffer 8 ALLOT
getin/out in out
MONITOR;

:MONITOR append.mon
append

BEGIN getin/out 10 + < UNTIL

buffer in 10 MOD + C(C!
1 in +TO0
MONITOR;

:MONITOR remove.mon
remove

BEGIN getin/out SWAP { UNTIL

buffer out 10 MOD + C(C@
1 out +TO
MONITOR;:

A process call to "append" will add a character (the

one previous 1left on the data stack of
task) into the circular buffer if not full.
call to '"remove" will take a character

the calling

A process

out of the

buffer if not empty (it leaves it on the stack of the
calling task). Any process calling "append" or "remove"
will be placed in queue if another process 1s already
executing in the routine "append" or "remove".

3. REAL-TIME FACILITIES

DELAY STATEMENT

The delay statement can be used if the current task execu-

tion has to stop for a specified time.

WIJNANDS AND BRUIN: A REAL-TIME FORTH SYSTEM page 6

Usage: (delay.time) DELAY

The delay statement will immediately place the task that
executes this statement into a waiting state for the speci-
fied time.

TIMERS

For real-time use a delay statement can be used in most
current languages only. In a class of applications this 1is
unsatisfactory. It is often not the two instants of start of
consecutive execution which will be separated by a period,
but the end of one execution and the start of the next that
is desired.

To facilitate programming of correct intervals or cycle
times timers may be used.

A timer 1s a data structure declared by:
TIMER timer.name-list

Example: TIMER timerl , timer2 , timer3

Only 5 operators are allowed on a timer:

(timer.value) timer.name SETTIMER
timer,name WAITTIMER
timer,name READTIMER (timer.value)
timer,name STOPTIMER
timer.name CONTTIMER

SETTIMER will assign the value, (timer.value), 1left on the
datastack, to the timer structure. While the calling task
can continue to execute the value of the timer will be
decremented every elapsed time unit until zero.

WAITTIMER will take the current value of the timer and will
place the task executing this statement into a waiting state
for a time interval that corresponds to this value.

READTIMER returns the current value of the timer, STOPTIMER
stops the timer value to be decremented and CONTTIMER will
continue the decrementing,

Under the condition of sufficient memory resource any number
of timers may be active at any moment. The efficiency with
numerous timers is high in RIDF since, in fact, only one
timer is counting; all other timers have offsets to this one
timer., Administration is only carried out at zero descend of
this one timer,

WIJNANDS AND BRUIN: A REAL-TIME FORTH SYSTEM page T

Example:
TIMER timer.pid

PID-controller

BEGIN
20 timer.pid SETTIMER
calculate
stimulate
timer.pid WAITTIMER
REPEAT ;
Although the routines "calculate" and "stimulate" may
take several clock cycles, the cycle time of the con-
. troller (20) is secured.

4. SOME REMARKS ON REAL-TIME RESPONSE

High speed real-time applications rely heavily on the defi-
nitions for task communication. This communication can be
performed by:

- sharing data

When tasks share data on the basis of monitored opera-
tors, a special mechanism is provided for the real-time
requirements of tasks with high priority. This mecha-
nism is needed for the following situation:

If task A processes within a monitor it can be post-
poned by an activated task B with a higher priority.
. Then when task B wants to enter the monitored region,
it will be placed in queue for later execution and task
A 1s allowed to process again. As soon as task A leaves
the monitor task B is awakened and since task A has
lower priority task A will be suspended.
When only two tasks are active no problems are encoun-
tered. But we can imagine a situation in which other
tasks are running, task A is within the monitored
region and B is waiting to enter the monitor. Without
any special provisions all other active tasks will now
postpone task B, even if B has the highest priority' Of
course this is undesirable. To overcome this problem
the scheduler will temporarily assign the priority of
task B to task A at the point in time +that task B
wishes to enter the monitor. When A leaves the monitor
its original priority is restored. In this way a task
awaiting the completion of a task of lower priority
will not wait any longer than its priority allows. This
scheme 1is vital for control systems, where task B
‘ supplies the calculated controller signal and A changes
the parameters, as in adaptive control.

WIJNANDS AND BRUIN: A REAL-TIME FORTH SYSTEM page 8

- signaling by semaphores

Signaling takes place by semaphores. When a task has to
await a semaphore or monitor, it will be placed in a
queue. Tasks awaiting a common entry are served in most
languages on the basis of first in first out without
their priorities considered, which seems to be unfair.
In RTDF scheduling is done on the basis of priority.

If a signal is imposed on a semaphore the scheduler
will immediately consider the consequences. This means
that 1f a task with a suitable priority was awaiting
this semaphore the scheduler will, within microseconds,
perform a task switch.

In RTDI the time needed to respond to events lies 1in the

millisecond range. The unit of time in RTDF is the cycle
time of a hardware-provided periodical interrupt and may be
as small as 5 ms for a Z80-system running at 4 MHz. This

yields an efficiency of better than 95% with any number of
tasks in any state.

5. PROGRAM DEVELOPMENT

Interrelated concurrent processes are often nondeterminis-
tic. Correctly appearing concurrent programs can have unex-
pected erroneous results and often have hidden errors. Al-
though the 1language concepts here presented may support
correct concurrent programs, the debugging phase is far more
evident than in the case of sequential programming.

The most important feature of Forth is its ability to deve-
lop interactively. It is very important to preserve this
programming environment for concurrent program development
as well,

A large number of commands can be wused for development.
Their use requiers in some cases some knowledge of the
scheduler. Development tools include commands to display
scheduler status, the state of tasks, timers etc.. Inter-
rupts can be simulated and a task switch can be forced.
These commands are for development only. Usage in applica-
tion programs can easily lead to unpredictable results.

RTDF is a complete Forth system. In addition to the 1real-
time facilities it includes a powerful floating-point pack-
age, a filing system integrated to the CP/M operating sys-
tem. Sources can be made by CP/M editors. For fast develop-
ment, a Forth editor is available with a subset of Word Star
commands .

System development for embedded systems has been proved to
be fast. Special attention was given to the turnaround times

WIJNANDS AND BRUIN: A REAL-TIME FORTH SYSTEM rage 9

during development. The switching between Forth, CP/M and
editors takes seconds. TYTorth code is compiled 1in record
time. The compiling time of a complete new system, including
its kernel takes less than 5 minutes.

b. CURRENT STATE AND FUTURE PLANS

While the first version is being used in a number of appli-
cations, further developments include a multiprocessor sys-
tem for the control of a mobile robot and an expert system
for process control implemented on a VME-bus system.

?. DISCUSSION

The language concepts presented by RTOF will help to develop
correct concurrent programs. Their definitions are typically
Forth-1like and therefore include all the merits and demerits
embodied by this language.

Although Forth is commonly used in real-time control systems
there are no established Forth-tools in this field. (This is
nc surprise since concurrency is still one of the topics of
todays computer language discussions.) The definitions here
presented for real-time and multitasking applications may
perhaps contribute toward a discussion on a structured deve-
lopment of these tools.

Reference:

(1) Brinch Hansen, '"Distributed Processes", Commun. Ass.
Comput. Mach., vol 2i, Oct 1974,

-—0--

