TYPE INFERENCE IN STACK BASED LANGUAGES

Bill Stoddart & Peter Knaggs
School of Computing and Mathematics
Teesside Polytechnic
Middlesbrough TS13BA
UK

Tel: 0642 (International 44642) 218121
Fax: 0642 (International 44642) 226822
Email; NER034 @ TP.AC.UK

Abstract

Wwe consider a language of operations which pass parameters by means of a
stack. An algebra over the set of type signatures is introduced, which
allows the type signature of a program to be derived from the type signa-
tures of its individual operations. The algebra is powerful enough to deal
with typeless "wildcard" operations, such as swapping the top two elements
on the stack, iterative control structures, and "type free" machine level
primitives.

Although these theories apply in principle to any stack based language,
they have been evolved with particular regard to the language Forth,
which is currently implemented in a type free manner. We hope this work
will stimulate an interest in Forth amongst those applying algebraic tech-
niques in software engineering, and we hope to lay the theoretical founda-
tions for implementing practical type checkers to support Forth
programming.

Key words

Formal Aspects, Stack Based Languages, Semantic Model Language, Algebras,
Type Inference, Forth.

1991 FORML Conference Proceedings 407

408

Introduction

Stack based languages are important both as intermediate target languages
for compilers and as application languages in their own right (Forth
[BRO87], Reverse Polish Lisp [WIC88], etc).

We consider a language of "words" which are associated with operations
that obtain input arguments from a stack and return output arguments to
the same stack. The types of these arguments are given by a type signa-
ture.

For example, we write (a b -- ¢) to represent the signature of an oper-
ation that requires two input arguments, of types a and b, and returns
one argument, of type c. In this notation, the top of the stack is shown to
the right.

Suppose an operation with type signature (a b -- c) is followed by an
operation with type signature (d ¢ -- a a). We write
(ab-—-c){dc-~-aa)

to denote the combined signature of the first operation followed by the
second.

We can reduce this combined signature as follows.

First note that the argument left on the top of the stack by the first
operation is of type c, and that this is the type of argument required from
the top of the stack by the second operation. The types match, and we can
cancel them as follows:

(ab--c)(dc-—-aa)=(ab--)(d--aa)

We now have a form in which the first signature does not supply any
arguments to the second, so the argument of type d required by the sec-
ond operation must be present on the stack before the first operation is
executed. Therefore we can write:

(ab--)d--aa)l=(dab-—-aa)

We can check these manipulations by means of a stack "trace", which starts
with arguments d, a and b on the stack and terminates with arguments a a.

Operation Signature Stack

dab
(ab--c¢c) dc (pop types a, b, push type c)
(dc--aa) aa

We also consider primitive type free operations, such as swapping the top
two elements of the stack, irrespective of type. The operation has the
signature (wi w2z —— w2 w1). We call w1 and w2 wildcards because they may
be of any type. Obviously we will want rules for wildcards which give
reductions such as:

((w1 w2z —— w2 w1) w1 w2 =—— w2 wi) = (w1 w2z -—— w1l wz)

1991 FORML Conference Proceedings

The initial formulation of the type signature algebra was presented by
Jaanus Poial at Euro Forml 90, the annual European conference of Forth
users. [POI90-1]. His algebraic theory draws on work by Nivat & Perrot
[NIV70]. The current paper adds rules for wildcards and other multi-types,
and gives the type composition rules for some control structures (the latter
having also been formulated, though in a different .way, by J Poial
[POI90-2]).

NOTATIONS

Wwe assume elementary set theory and first order predicate logic. Other
mathematical structures (relations, functions and sequences) are modelled in
terms of set theory. Because we hope that this paper will be read by those
involved with Forth as well as by those with an interest in formal aspects,
a fairly complete review of the notations used is given.

Sets
For an arbitrary set X
#X represents the number of elements in X.

An identifier x representing an element of X is introduced with the declar-
ation:

X
Subsequent to its declaration, we say that x is an element of a set A by
writing:

x € A,

Set Description

We can describe the elements of a set by direct enumeration, e.g.

A = a1} az, a3

This tells us that A = { ai, a2, a3 } and that ai, a2, a3 are three distinct
elements.

Otherwise we use the form:

A = { declaration | predicate . shape }

Where declaration declares bound variables used in the set description,
shape gives the form of the set elements, and predicate is a predicate
defined over the bound variables which is satisfied iff elements with the

given shape are members of the set.

For example the set of all even numbers greater that 10 could be described
with:

{n:N'n>5.2n}

where N represents the set of natural numbers.

An alternative fo_rm is

A= {xX | px)}

Which defines the subset of X which contains exactly those elements of X
for which p(x) is true.

Power Sets and Cartesian Products
The power set of A (the set of all subsets of A) is denoted by 22

The cartesian product set A ~ B of A and B is the set of all ordered pairs
(a:A,b:B).

1991 FORML Conference Proceedings 409

412

We introduce the following identifiers and predicates:

p,a:d

s1, sz, t1, tz2 : seq T

sig(p) = (s1,82)

sig(q) = (tnt2)

p and q represent two "words" in the language.

s1 is the sequence of input argument types for p, and s2 it the sequence
of output argument types for p.

We use pq to represent the sequential composition of the operations p and
q.

We use

sig(p)*sig(a)
or just

sig(p)sigl(a)
to represent the combined type signatures.

We assume that sig is a homomorphism so that:

sig(pq) = sig(p)sig(a)

For any type sequences sl, 82 W€ introduce the syntactic equivalence:
(s1,82) == (s1 —— s2)

In addition, when writing out the elements of sequences in the context of a
type signature, we omit sequence brackets and us spaces as separators.
Thus

(<a,b,c>—-—<a,a>)
will be written as

(abc--aa)
This gives us the "stack notation" used by Forth programmers.

Type Signature Reduction

We present a set of rules for reducing (s1—-s2)(t1—-t2) to a single type
signature.

1. If #s2 = O (i.e. if s2 is of length 0)
(s1 - s2)(t1 —— t2) = (tis1 —- s2)

Example:
sig(p)sig(q) = (a b - Wec--d)=(cab--4d)
Here p takes arguments of types a and b from the stack, and returns
no arguments. The argument of type ¢ required by ¢ must be on the
stack before p is executed.

2. If #t1 = 0
(s1 —- s2)(ta -- tz) = (s1 -- szt2)

Example: _
sig(p)siglq) = (a— b) —— ¢ y=(a--bc)
p takes an argument of type a and leaves an argument of type b.

1991 FORML Conference Processs

q takes no arguments and leaves one argument of type c.
pa takes an argument of type a and leaves arguments of type b and
3

These first two rules cover the cases in which no parameters are passed
between the two operations. No type clash can occur in such circumstances.

The third rule detects a type clash
3, If #s220 ~ #t1>0 ~ last(s2) € K ~ last(t1) € K

A
last(sz2) * last(t1)
then
(s1 —— s2)(t1 —— t2) = O

Example
sig(p)sig(a) = (a—ab)(bc-—d)= 0
Here p leaves an argument of type b on the top of the stack, and q
requires an argument of type c to be on the top of the stack.

We call the above rules composition rules. Repeated application of the
remaining rules (called reduction rules) reduces the type signatures until
one of the composition rules applies.

Rule 4 covers the case in which the top stack item supplied by the first
operation is the same type as the top stack item required by the second.
In this case we can "cancel" the two top items.

4, If #s2>0 ~ #t1>0 A last(s2) € K ~ last(t1) € K

le;.st(sz)=last(t1)
then
(s1 -- s2)(t1 —— t2) = (s1 —- front(s2))(front(t1)--t2)

Example: 4
sig(p)sig(q) = (a--b)lab-—cC y=(a=--)a--c¢)
Here p leaves an argument of type b on top of the stack as required
by a.

The remaining rules deal with wildcards.

Rules 5 and 6 cover case in which a wildcard is matched against an argu-
ment of known type. In these cases the wildcard is replaced by the known

type.

5. If #s2>0 ~ #t1>0 ~ last(s2) € K ~ last(t1) € W
then
(s1 - s2)(t1 —— t2) =
(s1 -— front(s2) W (front(n)——tz)[last(sz)/last(tl)])

Example
(a--bc)(wLw2-= Wi w2 Wi)
=(a--b)((w1~ w1w2zwl)c/wal)
=(a-—b)(w1--w1cw1)

6. If #s2>0 A #t1>0 ~ last(sz2) € W » last(t1) €K
then

(s1 —- s2)(tL —- t2) =
((s1- front(sz))[last(tl)/last(sz)])(front(t1) -- tz)

1991 FORML Conference Proceedings 413

Example:

(w1w2-—w2w1)(ab——c)
= ((w1 w2z —= W2){b/wi))l a -—c)
=(bw2—-wz)(a-—c)

Rule 7 covers cases in which a wildcard is matched against a wildcard. In
this situation we may also have a names clash, in which case we rename the
identifiers in the second signature. The renaming is only done once during
a reduction.

For example consider:
(s1 - s2) ta-—t2)=

(w1 w2 == W1 W2 W1 W2) w1 w2z w3 -= w2 w3 wi)
Here we rename the wi and w2 in t1 and tz to w1’ and w2', giving:
(W1 w2 =— W1 W2 W1 W2) wi’ w2’ w3 - w2 w3 wi')

Now rule 7 allows us to cancel last(sz) and last(t1) when these are both
wildcards. We must also substitute the name last(s2) for the name last(t1)
wherever the latter occurs in t1 or tz. Applying rule 7 three times and
then applying rule 2 gives the following reduction.

(w1 w2z == W1 W2 W1 W2) wi' w2' w3 —— w2’ w3 wi')
= (w1 wz —— w1 wz wi)(w w2 - w2’ w2 wi')
= (w1 w2z =—— w1 wz)(wi’ -= wi w2 wi1')
= (w1wz--w1)(--w1w2w2)
= (w1 w2 =— W1 W1 w2 w2)

Rule 7 is given formally as follows:

7. If #s2 > 0 A #t1 > 0 ~ last(s2) € W A last(t1) € W
then
(s1 —- s2)(tr —— t2) =
(s1——front(sz))((front(t1)-—tz)[1ast(sz)/1ast(t1)])

This completes the rules for type signature reduction.

The complete reduction of a type signature (s1--s2)(t1--t2) giving a non
zero result requires n steps where!
n = 1 + min(#sz,#t1).

To see this note that all reduction rules reduce the length of sz and ti1 by
one, and when either of these sequences becomes empty a single composi-
tion rule can be used to complete the reduction.

We now give some examples in which complete reductions are performed.
The rule being used at each step is noted on the right.

1. (a =-- b c d){w1 w2 —— W2 wi)

= (a = b c)(w1-—-d wi) Rule 5.
= (a--Db)(-—dc) Rule 5.
= {a-- bdc) Rule 2.

414 1991 FORML Conference Proceedinds

2. (w1 w2 w3 —— W2 W3 wi){a b == ¢)

e (b w2 w3 —— w2 w3)(a - c) Rule 6.

= (b w2 a == w2)(—= ¢) Rule 6.

= (b w2 & —— w2 c) Rule 2.

= (b wa-—wc) Since the naming
of wildcards is
arbitrary.

3. (w1 w2z —— w1 wz wi)(wl w2 == Wl W2 wi)

= (W1 w2 == W1 W2 wi) (w1’ w2’ —— wi' w2’ w1’) Renaming

= (w1 wz == w1 w2)(w1' -- w1’ w1 wi') Rule 7.

= (w1 w2 == wi){ == w2 w1 w2) Rule 7.

= (W1 w2 =~ W1 W2 W1 W2) Rule 2.

The Algebra of Type Signature Composition

Let (®, { * }) represent the algebra formed by the set of type signatures
together with' the operation of type signature composition. We now investi-
gate the structure of this algebra. We need the following rule for 0 and for

any u :
u0 = 0u =0
Note also that:
=+ -)
is an identity element since for an arbitrary signature u : ® since:
u(-=-) = u by rule 2
and
(--Ju=u by rule 1

In the discussion that follows we assume the following identifiers and
predicates

u, v, : ®

s1, sz, ti, tz, a, b : seq T
u = (s1 -— s2)

v = (t1 -- t2)

Consider uv where si, 82, ti, t2 contain no wildcards. In this case, either
uv=0, or by repeated application of reduction rule 4 we obtain:

uv = (s1 —-)a -— tz) where ty = a"s2
or
uv = (s1 —— b)(-- t2) where s2 = b™t1

So in this case we can €Xpress the rules for type signature composition as
follows:

1991 FORML Conference Proceedings 415

3a: seq K. tl = a"sz2 ruv (a"s1 -~ t2)

v
3p : seq K. tl - b7tz A uv

4

(s1 -- b"ta)

uv = 0
Some results become immediately obvious.
Given r, s, t : K
(r —— s){s = t) = (r — 1)
(s -= s)» = (s -= 8)
We can also show associativity, i.e. for any u, v, w : &
(uv)w = u(vw)
The proof, by considering cases, is obvious but long and is omitted.

We are not at present able to prove that the properties of the algebra are
unaffected by the introduction of wildcards, but we have a strong intuitive
belief that the above results will remain true.

The Composition of Alternative Type Signatures

We introduce an operator, called + say, such that if s1 and sz are type
signatures, si+sz would be interpreted as the type signature of an oper-
ationthat can have type signature si or type signature sa2.

The + operator is commutative and obeys the distributive laws. i.e.
s1+s2 = s2t+s1

s1(s2+s3) = s1s2+s183

(s1+s2)83 = S183+S283

The zero element from type signature composition functions as an identity
for +
s+0 = s

Also s+s = s

Using the algebra (¥,{+,*%}) we can give results for programs involving
conditional statements and iteration, as well as for primitive "type free"
operations. Our examples are taken from the Forth language.

We will distinguish Forth words that are enclosed by normal text by print-
ing them in bold.

A Forth IF structure has the form:
IF a ELSE ® THEN
Where a and B are sequences of Forth words.

The condition test precedes the IF, and returns an argument of type flag,
which is consumed by the IF. Relating this to English syntax we have
something akin to the form:

416 1991 FORML Conference Proceec "cE

Is it raining?

Ifso go to club

else go to park
then eat sandwiches.

We declare:

w : seq A
to represent a Forth program.
Let

w = IF a ELSE B THEN
Then

sig(w) = (flag --)(sig(@) + sig(®))

One standard Forth iteration structure has the form:
BEGIN « WHILE B REPEAT

BEGIN marks the beginning of the loop. The sequence of Forth words @
provides a flag which is consumed at WHILE. If the flag is true, the word
sequence P is executes and control is passed back to BEGIN. Otherwise
execution continues with the word that follows REPEAT.

Let
= BEGIN a WHILE B REPEAT
Then:
sig(w) = (2 (sig(®)(flag --) sig(R))i sig(a)(flag -=))

=0

Since we have no semantic information on the language in this theory we
have no way of knowing how many times the loop might execute. The type
signature is therefore an infinite sum. However, if the loop is "balanced" in
terms of stack arguments this complex signature will simplify to a single
term.

The loop is balanced if there exists some s : seq T such that
sig(a)(flag -~)sig(®) = (s -~ s)

The signature of W then reduces to:

sig(w) = (s —- s)sig(o)(flag -=)

Multiple Type Signatures and Primitive Operations

Forth has a nucleus of primitive operations that often have multiple type
signatures because they operate on primitive binary data which may have
more than one interpretation. For example AND removes two binary numbers
from the stack, performs a bitwise binary and operation, and pushes the
result back to the stack.

We can interpret this as having type signature (logical logical -- logical),
where "logical" is a type representing a sequence of binary bits equal in
length to the wordsize of the machine (typically 16 or 32 bits).

1991 FORML Conference Proceedings 417

418

Forth represents the Boolean values true and false with binary values 0
and -1. (noting that in twos complement arithmetic a -1 is represented by a
binary number with all bits set to 1). So the same machine primitive func-
tion AND will also perform boolen operations on flags. We write its type as:
sig(AND) = (flag flag -- flag) + (logical logical -- logical)

Memory Access Words

We divide K, the set of known types, into a set of basic types B and a set
of pointer types P.

B, P: 2K

BwpP=K

P = { t:B, n:N| n>0 . *nt }

Here * indicates indirection, so an identifier of type *a would be a pointer
to an item of type a (where *a == ¥la)

We introduce the Forth word @, whose function is to remove an address
from the stack and return the contents of that address.

@: A
sig@) = L(*k - k)
This infinite sum will often collapse to a single term on being composed

with a signature (s -- t) which provides additional type information. Here
are two examples:

(ab -- %)sig(@) = (ab--c)
and
sig(@(ab--c)=1(a*b--c)
The most general rules for such reductions can be stated as:

For all
s, t:
x : K

(s —— t"<*x>)sig(@) = (s -- £ <x>)

and sig(@)(s"<x> —- t) = (s"<¢kx> —- t)
These rules may be easily proved. For example consider the first:

We have

(s == t <*x>)sig(@)

= (s -- t"(*x>)gel((*k -- k)
(s —— t"<*x>)(*x -- x)

(s == t)(== x)
(s == t™<x>)

The corresponding word to write to a memory location is "store", denoted
by the single character !

"Store" removes an item and an address (the address being the top stack
item) and stores the item at the address.

1991 FORML Conference Proceedings

sig(!) = kZK(k ¥k --)

Once again this infinite sum will tend to reduce to a single term if the
operator is used correctly. The rule for ! composition is:

(s —— t"<x,*x>)sig(!) = (s —- t)

Structured Data Types

Our set of types is an unstructured set of type names. This does not mean
the language itself need be without structured data types, but their struc-
ture will not form any part of the type theory. In Forth the relationship
between a record and one of its constituent fields is generally an
operational one, For example an operation could be defined convert a
record address to the address of one of the fields in the record. The type
signatures of such conversion operations effectively deal with structured
types.

Immediate Words

Some Forth words are executed rather than compiled when they are "seen"
during the compilation of a word sequence. For example consider the Forth
definition:

. ABS { n == u) DUP 0 <
IF NEGATE THEN ;

This defines a new word ABS which returns the absolute value of an
integer. It takes an argument of type n (signed integer) and returns an
unsigned integer (type u).

The default compilation process for Forth is to compile a sequence of oper-
ations for subsequent execution. Thus the compiled "body" of ABS will com-
mence with the operations:

DUP duplicate the top stack item
0 push a zero onto the stack
< remove top two stack items, compare, return a flag

when compilation reaches IF however, we cannot simply compile an IF oper-
ation, since we do not yet know the relevant branch offset. IF is a typical
example of a Forth immediate word. It will compile a branch primitive, leave
an offset address to be resolved later (by THEN) and will leave a token for
a subsequent syntax check. THEN will check the syntax and resolve the
branch offset. Although beyond the scope of the current paper, it is
interesting to attempt a formalism that covers both the compile time (im-
mediate) and run time operations of a sequence of words.

Operations as arguments

Forth allows an operation to be passed as an argument and subsequently
executed. The Forth word EXECUTE removes an "execution token" from the
stack, and executes it. The type of EXECUTE is therefore:

1991 FORML Conference Proceedings 419

420

z (s == t)
seseqT teseqT
This is too complex a form to allow any meaningfull checks, so we will allow
the programmer to provide additional type information whenever EXECUTE
is used. We could also allow all type signatures as types, but at the
moment this is not something we had time to investigate.

Type Specifications and Type Correct Programs

One possible way to define the type correctness of a program w with
respect to a specified type signature s is to say that that w is correct
with respect to s if sig(w) = s.

However, this does not take into account the possibility of using the signa-
ture s to help interpret the type of w. For example we would like AND to
be type correct with respect to (flag flag —- flag), which it is not
according to the above definition, since:

sig(AND) = (flag flag -- flag) + (logical logical —- logical)

We modify the definition of type correctness to take this into account.

First we define functions to extract the inputs and outputs of a type sig-
nature.

inputs, outputs : seq T x seq T —seq T

inputs(s —— t) = s
outputs(s -- t) = t

We say w is type correct with respect to a type specification u iff
(-- inputs(u))sig(w)(outputs(u) --) =1

With this definition, AND is type correct with respect to (flag flag -- flag).

Conclusions

Although the Forth language is always implemented in a type free manner,
Forth programmers must keep track of the types they are using and select
appropriate operations for those types if their program is to perform cor-
rectly. Automatic type checkers for the Forth programming environment
have not yet developed, and presumably the reasons for this are that
Forth has many "type free" operations, and also that type checking was
perhaps thought to be dependant on operation semantics. This paper shows
that rules for type free opeations can be included in a type algebra, that
over a wide range of possible programs the logic required to keep track of
types is independant of operation semantics, and that it is possible to use
simple rules to derive the type signature of a program from the types of
its constituent operations. We conclude from these results that a Forth type
checker is a practical possibility.

A number of questions remain to be answered. We have introduced two
methods for dealing with "type free" operations. We used special wildcard
rules to deal with stack manipulations such as SWAP, and introduced the +
operator to our algebra to deal with alternative type signatues. Ideally we
would like to derive the wildcard rules from a more basic algebra of knowr

1991 FORML Conference Proceear 2

types. This would unify the theory and give a simpler and more tractable
algebra. We have also omitted any consideration of type signatures as types
when passing operations as arguments.

Acknowledgements

Part of this research was carried out with the assistance of an SERC CASE
award for which the industrial partners were Computer Solutions Ltd.
Byfleet. Surrey.

Special acknowledgements are due to Jaanus Poial of Tartu University,
Estonia, for introducing the idea that type inference for stack based lan-
guages could be formulated algebraically.

References

[BRO8T] Leo Brodie. Starting Forth, 2nd Edition. Prentice Hall Interna-
tional.

[NIV70] M Nivat & J F Perrot. Une generalisation du monoid bicyclique.

C.R. Acad Sci. Paris, 271A, 1970, p 824 - 827.

[POI90-1} Jaanus Poial. The Algebraic Specification of Stack Effects for
Forth Programs.
Proc. of EuroFORML'90 Conference.

[POIS0-2] Jaanus Pdial. Letter to the authors.

[WIC88] W C Wickes. RPL: A Mathematical Control Language. Proc of 1988
University of Rochester Forth Conference. Rochester. NY. USA.

1991 FORML Conference Proceedings 421

