
Multiple Language Programs Made Easy

Howerd Oakford, Inventio Software

12 Aug 98

Abstract :

A simple extension to the Forth compiler allows different language
(English/Spanish/German) versions of the same program to be produced
from identical source code. Word processor compatible translation files are
used to allow translation of text messages by non-programmers.

Forth is alive and well in several niche markets. Getting the maximum performance from your hardware,
providing extensible user interfaces (scripting languages) and the creation of customised compilers are
three areas which spring to mind.
I was asked recently to provide a Spanish version of a program that I had previously written using 8051
chipForth, and rather than mechanically copy and edit the source I decided to try to automate the process
as much as possible, and make it generally applicable to any Forth program. It was the customised
compiler facet of Forth that allowed me to do this in a very simple way.

The application in question is an embedded 8031 with 32K battery-backed RAM, 32K EPROM, keypad,
LCD, which together made up the electronics of a Moisture Meter to measure the percentage moisture
content of grains such as wheat, barley and oats. This product is in fact the direct descendent of the unit
that I designed circa 1979 - in those days the processor board used an 1802 with 2K of EPROM and 32
bytes of RAM. The LCD today has also gone from 4 digits to 2x20 characters, and the keypad from 8 to
16 keys. In step with the improvements to the hardware, the software has changed too : the original was
programmed in 1802 microForth using an 1802 based development system - now its 8051 chipForth
hosted on a PC. The application software used to just measure moisture and weight, with simple
averaging, now by using an Acoustic Coupler Modem (another 8051 chipForth product!) calibration
curves can be transferred to and from units by phone using a PC based program. The unit can also be
operated and calibrated remotely over the phone, and it is even possible to run chipForth remotely should
this ever become necessary!

The source for the program occupies roughly 120 blocks, and to provide an EPROM with the LCD and
RS232 messages translated into Spanish (or any other language) the following additional code is added
to the chipForth system :

First, some database and general support words are added to the Host’s Forth system. This part of the
program accesses a file called SPANISH.TRN using block buffers. A file based system would be similar.
All that is required is a linear contiguous list of 128 byte records, indexed by number. The file is created
externally using DOS and is of fixed length (say 32K bytes).

Second, a modified version of the target compiler’s STRING is created, called +STRING .
+STRING performs the same actions as STRING , except that after the string is fetched using WORD the
vector ?LANG is executed to perform the translation. Three actions are defined for ?LANG :
MAKEFILE copies the English text into two consecutive half-records (of 64 bytes each),
ENGLISH sets up the default no-op to use the English text straight from the source,
SPANISH sets up the compiler to compile the translated string from the file, rather than the original
source text.

Thirdly, the Host’s cross compiler versions of dot” and “ are modified to use +STRING instead of
STRING .

To use the program, load the cross compiler by typing COMPILER LOAD , then type :

MAKEFILE prog LOAD \ prog is the target program’s load block

This copies every string compiled by dot” or “ into a record in the file SPANISH.TRN, duplicated twice
into each 128 byte record.

Give the file SPANISH.TRN to the person who will translate it. They can use any word processor capable
of handling conventional DOS text files, as a carriage return and linefeed is included for each text entry .
Each text item appears on two consecutive lines - the human translator simply edits the second line to its
translated form. The translated text must occupy the same space on the LCD as the original.
The edited file is then returned to the chipForth system.

ENGLISH prog LOAD \ creates the English version, straight from the program source

SPANISH prog LOAD \ creates the Spanish version, using the SPANISH.TRN file.

The entire translation program occupies 5 blocks (plus 5 more for the shadows) , and can be printed out
on two sheets of A4 paper.
The source code following is for 8051 chipForth, but the principles are easily adapted to any Forth system.
(Note : [ASCII] X compiles hex 58 as a literal , I is the same as R@).

Extensions to the system could include :
• the record structure could be modified for many languages in one file,
• all language variants could be compiled - which one to display is selected at run time,
• the simple indexed database could be replaced by one which searches the file for the required text.

There could be a prompt displayed to request a translation if it could not be found in the file. This would
add some complexity to the program, however.

 The system illustrates several principles :

• Having access to the source code for a well written and highly factored product such as chipForth
makes customised compiler actions very easy to implement.

• If the internal structure of a program is kept simple, it is easy to add interfaces to external systems
which are much more complex. The program uses blocks which are tweaked to be readable by a word
processor.

• If a file is of fixed length, the difference between a file and block based system is just a carriage return
and linefeed at the end of each line. If records are of fixed length and number, blocks allow a one line
database to be written (see >FILE). Blocks can be read by a word processor if crlf is added for each
line.

• It is possible to create any number of language variants of any Forth program using identical source,
with a translation file for each language or set of languages.

• The constraints of the system such as fixed field sizes on the LCD and fixed number of records allow
vast simplification compared to a generic solution

• The boundaries between the source code, compiler and editor are becoming less clearly defined.

Howerd Oakford 12 Aug 98
Inventio Software - Specialist Instrumentation Design and Programming
Phone +44 1344 457057 Fax +44 1344 640546 Email inventiosoftware@compuserve.com
WWW http://ourworld.compuserve.com/homepages/inventiosoftware

Language Translation Program Source 8051 chipForth Copyright Inventio Software 12 Aug 98

69 Unit 0 Part 0 Abs 69
 0 (Foreign language translation)
 1 VARIABLE ?LANG
 2
 3 : ENGLISH 0 ?LANG ! ; ENGLISH
 4
 5 VARIABLE TO:
 6
 7 : $COPY (source dest) TO: ! COUNT 40 MIN >R
 8 TO: @ 1+ I MOVE R> TO: @ C! ;
 9
10 VARIABLE NUMM 0 NUMM !
11
12 : >FILE (n - a) 8 /MOD 2100 + BLOCK SWAP 128 * + ;
13
14
15

70 Unit 0 Part 0 Abs 70
 0 (Foreign language translation)
 1 : TRANSLATE NUMM TALLY
 2 (CR ." >>> " DUP COUNT TYPE)
 3 NUMM @ >FILE 2+ 64 +
 4 (CR ." *** " DUP 20 TYPE)
 5 OVER COUNT MOVE
 6 (CR ." " DUP COUNT TYPE)
 7 ;
 8
 9 : SPANISH 7 UNMAP 7 MAPS" SPANISH.TRN" 2100
10 MODIFY ['] TRANSLATE ?LANG ! 0 NUMM ! ;
11
12
13
14
15

71 Unit 0 Part 0 Abs 71
 0 (Foreign language translation)
 1 (EXIT : This overwrites the file SPANISH.TRN !!! (***)
 2 : (MAKEFILE) CR ." >>> " DUP COUNT TYPE
 3 NUMM TALLY DUP COUNT NUMM @ >FILE >R
 4 (mark line) I 64 [ASCII] . FILL
 5 (CRLF) 13 I C! 10 I 1+ C!
 6 (text) I 2 + SWAP MOVE
 7 (Default translation) I I 64 + 64 MOVE
 8 R> DROP UPDATE ;
 9
10 : MAKEFILE 7 UNMAP 7 MAPS" SPANISH.TRN"
11 2100 MODIFY ['] (MAKEFILE) ?LANG ! 0 NUMM ! ;
12
13
14
15

369 Unit 0 Part 0 Abs 369
 0
 1 ?LANG contains the vector to select the required
 2 language text
 3 The default is ENGLISH which sets a null action
 4
 5 TO: is a "local" variable, used for readability
 6
 7 $COPY copies a counted string from source to
 8 destination, up to a maximum of 40 characters
 9
10 NUMM contains the current count of string number
11
12 >FILE returns the address of text string n in a block
13 buffer
14
15

370 Unit 0 Part 0 Abs 370
 0
 1 TRANSLATE is the vectored action which inserts the
 2 translated text into the target program
 3
 4 SPANISH maps the Spanish translation file into block
 5 2100 and above and sets the translation action for
 6 +STRING
 7
 8 The text in parentheses is test code to display the
 9 strings being compiled into the file
10
11Note that NUMM is pre-incremented so that the top
12 two lines can be used for a title.
13
14
15

371 Unit 0 Part 0 Abs 371
 0
 1 (MAKEFILE) is the vectored action which creates a
 2 default translation file, with each text entry repeated
 3 twice.
 4 Text which is not manually modified in the file will then
 5 be the original English test.
 6
 7 MAKEFILE sets up the Spanish translation file and the
 8 file creation action for STRING
 9
10 Note this block is only loaded once to create the initial
11 file.
12 The paranthesis in front of the EXIT in line 1 is then
13 removed to prevent accidental loading.
14 Line 7 may be commented out so that only the English
15 lines are overwriten.

250 Unit 0 Part 0 Abs 250
 0 (Target assembler)
 1 : STRING (c) WORD DUP C@ 1+ DUP GAP
 2 HERE OVER - SWAP CMOVE ;
 3
 4 : +STRING (c) WORD ?LANG @EXECUTE DUP
 5 C@ 1+ DUP GAP HERE OVER - SWAP CMOVE ;
 6
 7 : EQU (n) CONSTANT ;
 8 : CODE (CREATE) -3 GAP ASSEMBLER ;
 9 : LABEL HERE LOG EQU ASSEMBLER ;
10
11 ASSEMBLER DEFINITIONS HEX 1F1F WIDTH !
12 DECIMAL 231 238 THRU
13 HOST DEFINITIONS (HEX 0303 WIDTH !)
14
15 : USE (a) >< EHERE 2- E@ 1+ T! ;

209 Unit 0 Part 0 Abs 209
 0 (Ascii display formatting)
 1 : ?R@ (t - | a) R> SWAP R> DUP COUNT + >R
 2 SWAP IF SWAP >R EXIT THEN 2DROP ;
 3
 4 FORTH : [ASCII] 32 WORD 1+ C@ [COMPILE]
 5 LITERAL ; TARGET
 6
 7 : dot" 1 ?R@ COUNT >TYPE ;
 8 FORTH : ." COMPILE dot" [ASCII] " +STRING ;
 9 TARGET
10 : string (- a) 1 ?R@ ;
11 FORTH : " COMPILE string [ASCII] " +STRING ;
12 TARGET
13
14 HOST
14

15

550 Unit 0 Part 0 Abs 550
 0 CODE creates a target CODE entry
 1 EQU (for equate) defines a host constant (CONSTANT
 2 will be redefined)
 3 LABEL names the current position in the target
 4 dictionary
 5 STRING constructs a string in the target dictionary
 6
 7 +STRING constructs a string in the target dictionary,
 8 but has an additional action which can be used to
 9 translate the string
10 BEGIN and U) as well as all other assembler words are
11 redefined to compile into the target dictionary
12 USE is also so redefined
13
14
15

509 Unit 0 Part 0 Abs 509
 0 String output words include:
 1 ?R@ tests a truth value, if set it returns with an in-line
 2 string address; otherwise it exits from the calling word
 3 (usually .")
 4
 5 [ASCII] compiles the ASCII value of the following
 6 character.
 7 dot" is the run-time code for ." It types the message.
 8 ." is a host definitions which references the just-defined
 9 run-time code.
10
11 string pushes the address of and steps past a string.
12 " compiles a string literal into a definition.
13
14
15

The first few lines of file SPANISH.TRN :

(GrainPro V1.0 26 Jun 98 English/Spanish translation)
(English is first, folowed by Spanish on alternate lines)
 ..
 ..
SAMPLE TESTS ..
TEST DE MUESTRA ..
PRINTER MENU ..
MENU DE IMPRESORA ..
BULK DENSITY MENU ..
MENU PESO ESPECIFICO..
CALIBRATION MENU ..
MENU CALIBRACION ..
etc etc....

The dots mark out the number of characters required for each string. This is constrained by the position of the text on the LCD -
he translated version must occupy the same size field.

