
Perspective MetaFORTHness

Mikhail Kolodin
St.Petersburg, Russia

http://myke.da.ru, myke@mail.ru, 2:5030/74.42

1999-09-17

Abstract

FORTH is known to be good for many reasons, but for the person
in science it should be primarily rewarded as a meta-system capable
of self-development, self-modification, being a meta-transitional tool.

At least it was so by now. The FORTH implementations appear-
ing in the last days enrich FORTH with new mechanisms, technologies,
constructions, but they seem to lose the initial flexibility. The re-
quirements for and directions of meta-ways of FORTH development are
discussed in the paper.

FORTH is well-known meta-instrument [1, 3, 6, 7], capable of self-reprodu-
cing and self-tuning. The technique of meta-compiling is traditionally used
for that. With it the FORTH system takes the complete own text on input,
compiles it in the special context, and writes the result as the new kernel.

The FORTH systems appearing in the last time use advantages of the op-
erating systems they are used in. E.g. FORTHs that are complied for MS
Windows use WINAPI interface. Since the access to such interface functions
is already provided by existing high level languages implementations, say,
MS Visual C++, they use C++ functions in the lower (kernel) level and, in
fact, are themselves written in C++.

But it means that FORTH is no longer written in FORTH; it cannot be
recompiled, reassembled using only its own facilities, but requires external
C++ compiler and maker (linker). This happens in many cases nowadays.
It cannot be considered a good practice.

Let us mark the most important features of traditional meta-FORTH im-
plementation that make it so interesting in meta plan [2, 3, 4, 5]:

• it has the complete text of itself in self-processable form (maybe using
built-in assembler);

1



• it has a special context (created in FORTH itself) that allows the FORTH

system be compiled out to separate space that can be dumped or saved
in some other way;

• it has special words to facilitate the setup and the process of meta-
compiling, so the program does not have to be changed significantly
when used in normal or meta-mode;

• it does not use external tools to be recompiled; everything needed is
contained within the same system, usually in loadable external files
(blocks).

From the point of view based on these definitions we cannot consider
modern FORTH implementations to be meta-systems; though, according to
some new research, the term meta itself has changed: we now deal with
complete and partial meta-systems, open and closed meta-systems:

complete meta-systems: containing all the necessary parts and sources
within them;

partial meta-systems: only some subsystem, treated as meta, is meta-
processed, while other may be processed with external tools;

open meta-systems: allowing access to all its parts (subsystems or exter-
nal tools);

closed meta-systems: some parts (subsystems) are unavailable and are
processed automatically, by their own means (as grey or black boxes).

With these refined definitions we now distinguish

• Linux as a complete open meta-system when compiled totally,

• but as a partial closed meta-system when tuned in or recompiled par-
tially;

• Beta-FORTH as complete open meta-system, when recompiled using its
own meta-package;

• SP-FORTH and WIN32FORTH as complete closed meta-systems when
compiled as usual.

Note that some basic level is required to be fixed, usually at the OS level:
we shall not always require recompiling from the hardware level.

Nevertheless, though we redefined meta-system in a pleasant way, we
should reconsider our understanding of FORTH strategy:

2



• FORTH implementation should be completely expressed in terms of FORTH
itself;

• FORTH should be meta-processed transparently for the user in respect
to the real tools used in the process;

• as many as possible subsystems and external systems, used by FORTH,
should be directly accessed from FORTH.

This will require additional theoretical investigation and practical imple-
mentation and testing, but it has good perspectives.

Having this in mind we shall succeed in building true meta-FORTH systems.

References

[1] Baranoff S. N., Nozdrunov N. R. The FORTH language and its implemen-
tations. — Leningrad: Mashinostroyeniye, 1988. — 157 p.

[2] Baranoff S. N., Kolodin M. Y. The FORTH phenomenon. // System Infor-
matics, #4. // Novosibirsk: VO Nauka, Sibirskaya Publishing Company,
1995. — Pp. 193–271.

[3] Kolodin M. Meta-technology: Purpose and Implementation. (In Rus-
sian) //Information technologies and intellectual methods. — SPb: SPI-
IRAS, 1995. — Pp. 83–86.

[4] Kolodin M. Preprocessing and Macroprocessing in FORTH-Based Meta-
System. (In Russian) //Information technologies and intellectual meth-
ods. — SPb: SPIIRAS, 1995. — Pp. 86–93.

[5] Kolodin M. Extended Possibilities of Decompiling in FORTH. (In Russian)
//Information technologies and intellectual methods. — SPb: SPIIRAS,
1995. — Pp. 93–100.

[6] Kolodin M. Meta-systems in Scientific Research. (In Russian) //Pa-
per for International conference “Regional informatics-96” (1996,
St.Petersburg).

[7] Kolodin M. Meta-features in FORTH. (In English) //Paper for Interna-
tional conference “EuroForth-96” (1996, St.Petersburg).

3


