
Milendorf, M., OpenBoot Dropin Modules

OpenBoot Dropin Modules
Michael Milendorf

Sun Microsystems, Inc.
One Network Drive, Burlington, MA 01803 USA

michael.milendorf@sun.com

Abstract
Firmware is the ROM-based software that controls a computer between the time it is
turned on and the time the primary operating system takes control of the machine.
OpenBoot is a Sun Microsystems implementation of IEEE Standard 1275-1994 for
Boot Firmware: Core Requirements and Practices. A dropin module is a file or a data
structure that is stored on various devices, such as flashprom, eeprom, nvram, floppy
diskette, disk, cdrom and network. The use of dropin modules in OpenBoot firmware
provides an elegant vehicle for packaging and delivering firmware device drivers and
diagnostics into RAM. Firmware can optionally load and execute dropins during
machine initialization, configuration and testing. The paper describes Dropin
Technology and its various applications.

1 Assumptions

The paper makes an assumption that the reader is somewhat familiar with the concept of
Open Firmware. The best known document on the topic is IEEE 1275-1994 Standard for Boot
(Initialization Configuration) Firmware: Core Requirements and Practices, published by the
Institute of Electrical and Electronics Engineers, Inc., 345 East 47th street, New York, NY 10017-
2394, USA. Dropins are not defined by the standard and it is Sun Microsystems technology.

2 ROM-resident Dropin Solution

A dropin concept was introduced in early OpenBoot by Mitch Bradley (1991). A dropin
was defined as a package which was placed in unused space at the end of a machine’s boot
PROM after OpenBoot firmware code. A dropin could contain data or executable code in any
number of different formats.

One application for dropins was the support of slightly different machines using the same
OpenBoot binary image. For example, a SPARC-compatible vendor might design a workstation
which was very similar to a Sun SPARCstation, but which had additional on-board I/O device.

Milendorf, M., OpenBoot Dropin Modules

This machine could use the standard Sun SPARCstation boot PROM, with an additional dropin
added to support the new device. Dropins provided many benefits in this situation. The
vendor only needed to license the binary PROM from Sun, not the complete OpenBoot source
code. In addition, including a dropin was easier and less error-prone than making source
modifications, and the use of dropins enhanced reliability and reduced development time.

Another useful way of using dropins was adding OpenBoot driver support for plug-in,
non-self-identifying devices. If a plug-in device didn’t have a PROM, or didn’t provide an
FCode driver on it, OpenBoot could provide a dropin driver for such a device.

Executable dropins could contain code in one of the following four formats:
• FCode
• Forth
• Standalone Program
• Machine Code

Dropins didn’t contain executable code only, they may contained data as well. This was
useful for storing data which was necessary for firmware operation, but which was optionally
or infrequently accessed, for example data for different fonts or for keyboard support.

Dropins were identified by their names with some names known to OpenBoot. Dropins
with known names were automatically called at various points in the startup process. Multiple
dropins with the same name were executed in the order that they appeared in the PROM.

Each dropin began with a header of the following fixed length fields: Magic Number field,
Image Size field, Checksum field, Reserved field and Dropin Name field. The last Dropin Image field
encapsulated the module data itself.

The following two OpenBoot interfaces were written to access dropins:

find-drop-in (name-addr,len -- false | dropin-addr size true)

find-drop-in attempts to locate the first dropin in the boot ROM whose name matches
the argument string. If successful, it returns the dropin ROM address, its size and a true
flag on the stack. If there is no dropin by that name in the boot ROM, a false flag is
returned on the stack. The pointer returned by find-drop-in refers to the boot ROM
itself.

do-drop-in (name-addr,len --)

do-drop-in executes all dropins whose names match the argument string, in the order
that they appear in the ROM. If no dropins are found nothing happens. Dropins may
be called from other dropins.

3 General Device-independent Dropin Solution

The original goal for dropins was to make it possible for vendors of SPARC clones to make
small changes to the startup code without having to change OpenBoot source code. In keeping
with that simple goal, the dropin design was relatively simple. Over the years dropins started
to be used more extensively and the design became inadequate for some of the newer uses.
Today, one of the new dropin applications is to package firmware device drivers and firmware
diagnostics as boot ROM dropins. The whole I/O subsystem (all the drivers) is now written in

Milendorf, M., OpenBoot Dropin Modules

FCode (versus Forth in early days) and is packaged as a set of individual dropins. All
firmware diagnostics are also written in FCode and packaged as a set of individual dropins.
Such an arrangement affords the OpenBoot ROM a much more dynamic structure and
function similar to the Solaris Operating System loadable module concept.

The proliferation of dropin modules provoked the need to use boot ROM dropin data
compression and decompression. Now the pointer returned by find-drop-in referred to the
RAM address.

Up to now, dropins were stored only in the boot ROM. At some point that was assessed
as an unnecessary restriction. It was discovered that dropin files could be kept not only in
the main boot ROM (flashprom) but on any storage device, such as motherboard eeprom,
nvram and even media devices, like floppy diskette, disk, cdrom and network.

The underlying mechanism to support the implementation of generic device-
independent dropin solution is supported by OpenBoot implementation of IEEE 1275-1994
standard interfaces for these devices. It turns out that there is no need to invent any new
non-standard interfaces (like old find-drop-in and do-drop-in). The standard device
methods open, close, size and read represent a complete working interface for the dropin
modules. For most firmware device drivers (floppy, disk and network) these methods are
already defined.

An exception was the boot flashprom device, which of course remains the primary source
of dropin images, and for which a new support driver was written, containing open, close,
size and read methods. This broader approach to the dropin devices called for further
improvement and suggested to implement a multi-level embedded dropin structure for the
flashprom device to make it adherent to file systems on other devices. Now the path for
driver#1 in the flashprom device could be represented as /flashprom@10,0:,|Drivers|driver#1.

Figure 1 OpenBoot FLASHPROM

Further one could use a standard file system for the flashprom device. If this were done it
would allow Sun Microsystems OpenBoot firmware to switch from a private dropin format
to one of the standard file formats for flashprom devices.

Whatever the final implementation for the flashprom device will be, here is the device-
independent generic solution to support dropin modules (files) in OpenBoot firmware:

Have the standard set of open, close, size and read methods for every device which
wants to support dropin modules. The methods are described in IEEE 1275-1994 and do the
following:

OpenBoot flashprom partitioning:
Drivers
driver#1

driver#2

Power On Self Test

OpenBoot

OpenBoot Diagnostics
diagnostics#1

diagnostics#2

Several level-1 dropins: OpenBoot
(contains assembly and Forth boot
up code), Drivers (contains level-2
FCode device drivers), Power On
Self Test (contains assembly test
code), OpenBoot Diagnostics
(contains level-2 FCode selftest
.

0000.0000

0010.0000

Each dropin contains the header and the
data itself, the data could be another dropin.

diagnostics).

Milendorf, M., OpenBoot Dropin Modules

open (-- flag)

Prepare this device for subsequent use. Typical behavior is to allocate any special
resource requirements it needs, map the device into virtual address space, initialize the
device and perform a brief “sanity test” to ensure that the device appears to be
working correctly. Return true if this open method was successful, false if not.

close (--)

Close this previously opened device. Restore the device (which has been previously
opened to its “not-in-use” state. Typical behavior is to turn off the device, unmap it,
and deallocate any resources that were allocated by open.

size (-- d)

Return the size of the device in bytes. If the size can’t be determined return -1.

read (addr len -- actual)

Read device into memory buffer; return actual byte count. Read at most len bytes from
the device into the memory buffer beginning at addr. Return actual, the number of bytes
actually read. If actual is zero or negative, the read operation did not succeed.

In addition to those interfaces create the dropin support package consisting of four
methods: open, close, size and read. Create the software /dropins package in OpenBoot device
tree for those methods to provide a calling interface to the methods of the specific hardware
devices (flashprom, floppy, etc.).

Code Example 1

 : open (-- ihandle) my-args ascii : left-parse-string $open-package ;
: read (addr len ihandle -- actual)“ read” rot $call-method ;

 : size (ihandle -- d) “ size” rot $call-method ;
: close (ihandle --) close-package ;

The device path and the dropin name are provided as argument string (through my-args)
to the open package method.

Summarizing, the complete dropin support environment in OpenBoot firmware consists of:

• /dropins device tree package containing open, close, size and read methods.

• Standard IEEE 1275-1994 firmware drivers for the devices (implementing open,
close, size and read methods) which are intended to be used as a storage source
for the dropin modules.

In case of floppy, disk, cdrom or network devices, dropin modules use the standard Unix file
system format. In case of ROM-class devices (like prom, eeprom, flashprom or nvram) we can use
OpenBoot format for dropins as described earlier in the paper, or implement the standard file
system on those devices.

Milendorf, M., OpenBoot Dropin Modules

4 Firmware Use of the Dropins

With the availability of /dropins package, the functionality of accessing dropins can be
rewritten based on the standard interfaces in the following way. find-drop-in now takes the
full device pathname, including information about dropin device and dropin name and simply
opens and reads the dropin device.

Dropins can be placed on any storage device which provides the standard interfaces: open,
close, size and read. A successful open method sets the internal pointer to the dropin data,
and enables size method to return the length of the dropin image in bytes. Then, provided
with the address of the memory buffer in RAM, the read method moves returned number of
bytes from the dropin source storage device into the memory buffer at the given address. The
close method restores the device to “not-in-use” state and releases resources.

Code Example 2 Definitions for find-drop-in, do-drop-in

 : find-drop-in (name-addr,len -- false | dropin-addr size true)
 “ /packages/dropins” $open-package (device-ihandle pkg-ihandle)
 >r >r r@ if ()
 “ size” r@ $call-method dup (dropin-size dropin-size)
 alloc-mem dup rot (RAM-addr RAM-addr dropin-size)
 “ read” r> $call-method (RAM-addr actual-size)
 “ close” r> close-package true (dropin-addr size true)
 else ()
 r> r> 2drop false (false)
 then
 ;

 : free-drop-in (dropin-addr size --) free-mem ;

 : do-drop-in (name-addr,len --)
 find-drop-in if
 over 1 byte-load
 free-drop-in
 then
 ;

Below are two examples of find-drop-in and do-drop-in use. By default, OpenBoot uses
flashprom as a dropin storage device and calls do-drop-in and find-drop-in as part of it start-up
sequence:

Code Example 3 Use of find-drop-in, do-drop-in

 ok “ /flashprom:,|Drivers|pci1000,f” do-drop-in
ok “ /disk@0,0:a,|Drivers|fonts” find-drop-in

Depending on the storage device, dropin modules may or may not be compressed.
Flashprom dropins are always compressed and thus it is a job of flashprom device read method
to decompress the dropin, before moving the image to a specified memory address.

Milendorf, M., OpenBoot Dropin Modules

5 Diagnostics Use of the Dropins

Another interesting application of dropins lies in the firmware diagnostics realm. The
primary IEEE 1275-1994 interface for diagnostics in firmware is the test command:

test (“device-specifier<eol>” --)

Invoke the selftest routine for the specified device. If the device node specified by
device-specifier has a selftest method, invoke it with execute-device-method. Otherwise
display an error message.

According to this original specification of the test method, the selftest routine must already
be present in memory for the test command to invoke it. OpenBoot implementation of IEEE-
1275-1994 extends the semantics of the test command to do the following:

test (“device-specifier<eol>” --)

Invoke the selftest routine for the specified device. If the device node specified by
device-specifier has no selftest method, attempt automatic loading of the selftest method.
If the device node has selftest method, or if it was added as a result of automatic
loading, invoke it with execute-device-method. If selftest is absent and if automatic
loading did not succeed display an error message.

The automatic loading of selftest method can be elegantly implemented if selftest routine is
packaged as a dropin module.

Each hardware device in OpenBoot is represented by a device tree node. Each node has a
set of properties. The name property is a text string consisting of a sequence of up to 31
characters. The compatible property is a list of text strings, each string consisting of up to 31
characters. The name property represents the generic name of the device, for example scsi. The
compatible property represents the list of specific names, from the most-specific to the least-
specific, for example {pci1000,f pciclass,001000}. If an entry of the compatible or name property
of the device node is selected as a dropin name, and dropin-device configuration variable
contains the list of possible dropin devices (pathnames), the following algorithm (as
implemented in OpenBoot) performs automatic loading of the dropin selftest package:

Figure 2 Automatic Loading Algorithm

A: For every name entry (from the most-specific to the least-specific), taken from {compatible, name} list of
device tree node properties, indicated by device-specifier (arguments to test command) Do:

B: For every device path (parsing left to right) in the dropin-device configuration variable Do:

1. Append name, which is a dropin name, to the path as extracted from the dropin-device, effectively
creating pathname argument string.

2. Call “ pathname” “ dropins” $open-package (-- flag).

3. If false flag is returned (dropin not found) goto B.

Milendorf, M., OpenBoot Dropin Modules

4. Otherwise the dropin was found. Call the size method of /dropins package and allocate size bytes of
RAM memory. Call the read method of /dropins package, to read the dropin into RAM. Prepare
device node, indicated by device-specifier to the evaluation of FCode and execute 1 byte-load which
effectively interprets FCode from the dropin image in RAM (the dropin package must contain all
support methods and definition for the selftest method). Release resources, and re-establish prior
firmware environment.

5. Now, selftest routine is present in the device node, indicated by device-specifier. Invoke selftest
method with execute-device-method. Exit to D.

Loop;

Loop;

C: Display an error message: There is no selftest method for the device.

D: End.

Here is an example of how the algorithm works at the user level:

Lets say we are about to test the scsi device, which is a Symbios disk. The OpenBoot node
for the scsi device is /pci@1f,4000/scsi@2 with name property set to “scsi” and compatible
property set to “pci1000,f_glm_pciclass,001000”.

OpenBoot has a diagnostic dropin selftest package (in the flashprom) to test a wide range of
scsi devices. Also there is a newer diagnostic (on a floppy diskette), designed to diagnose the
specifics of the Symbios pci1000,f scsi device in addition to its more generic set of scsi functions.

The less-specific diagnostic is stored in flashprom as |OpenBootDiagnostics|scsi dropin.

The more-specific diagnostic is stored on a floppy diskette as |Diagnostics|pci1000,f file.

Code Example 4

 ok setenv dropin-device flashprom
ok test /pci@1f,4000/scsi@2

 Starting Generic SCSI Selftest
 Test is completed

In the Example 4, test searches only flashprom device and loads scsi dropin. Now we reset
the machine and execute the following commands:

Code Example 5

ok setenv dropin-device flashprom floppy
ok test /pci@1f,4000/scsi@2

 Starting Symbios SCSI Selftest
 Test is completed

In the Example 5, test searches both the flashprom and the floppy diskette. Because test
searches from the most-specific to the least-specific name, it picks the pci1000,f dropin stored
on the floppy diskette before the scsi dropin stored on the flashprom is considered. The result is
that the more-specific diagnostic code ends up being loaded and executed. In all cases test will
automatically find, load and run the best suitable diagnostic for the device.

Milendorf, M., OpenBoot Dropin Modules

Another example could use a plug-in card with no selftest method or FCode whatsoever. In
such a case, OpenBoot can include the selftest dropin for a plug-in device in the motherboard
flashprom. Or the selftest dropin file could be stored anywhere on the network, or on a floppy
diskette, or on any suitable storage device. Now, even if the plug-in device doesn’t contain
FCode, OpenBoot at probe time of the machine will build a device node entry for the card and
will construct a compatible property (for PCI devices). test can now diagnose a device without
selftest or FCode for it.

6 Network as a Dropin Device

There are few issues associated with selecting network as a dropin-device:

First of all network is a slow response device and there is no way to distinguish between
“not ready yet” condition and “file not found” condition. Therefore, the only way to support
dropins on a network is to support a time-out parameter (number of retries) argument in a
network device path (an IEEE 1275-1994 recommended practice currently not supported in
OpenBoot). If number of retries, specified in the device path argument expired and an
acknowledgment is not received, the network open method returns a false flag (dropin file not
found).

Code Example 6

ok “ /network@0,0:,pathname,,,, retries ” do-drop-in

Another problem is that the size of the file is not provided in Trivial File Transfer Protocol
(TFTP - OpenBoot network protocol) before the actual network read is completed. So, the size
definition of /dropins package must be modified to return a fixed n bytes if size method is not
found for the device (network). Or ignore size altogether and simply provide a fixed n bytes as
a size instead. If that approach is taken, it would be wasteful to allocate too much memory
region. Instead use system allocated memory region (load-base) which is known to be larger
than n bytes in size.

7 Summary

This paper discussed the history and development of OpenBoot Dropin Technology.
Dropins are data modules or files, or executable modules or files which could optionally be
loaded into memory from different kinds of computer storage devices. Dropins can be loaded
and executed by opening, and reading /dropins software package. Dropin device path and
dropin name are provided as a single pathname text string argument to the open method.
Dropins Technology represents a compact, modular, device-independent way of packaging
firmware components and delivering them into system memory. The implementation of
Dropins Technology is elegant and simple, and showing the advantages Sun Microsystems,
Inc. gains, using standard implementation of EEE 1275-1994 for its boot firmware.

