
ANS Forth and large characters
\\boss\c\mpe\projects\international\i18n.widechar.v6.doc
Revised 15 June 1999

Authors:
Stephen Pelc, MicroProcessor Engineering, sfp@mpeltd.demon.co.uk
Steve Coul, MicroProcessor Engineering, sc@mpeltd.demon.co.uk
Peter Knaggs, Bournemouth University, pjk@bcs.org.uk

Contact:
Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England

Tel: +44 (0)2380 631441 N.B. Area code has changed
Fax: +44 (0)2380 339691
Net: sfp@mpeltd.demon.co.uk
Web: http://www.mpeltd.demon.co.uk

Introduction
This document has been written to address issues raised by, but outside the scope of previous
internationalisation documents. Our previous attempts to address these issues raised
considerable controversy on the ANS mailing lists and on the comp.lang.forth newsgroup. We
have taken the views expressed into account, and this document should be treated as a
discussion document prior to an ANS proposal.

Problems

Character size
The current ANS definition of a counted string assumes that all characters are the same size,
and it is implicit that this size does not change during the execution of a program. This is not
true for an program designed to run with multiple languages, which may have to deal with
text in 8 bit character sets (e.g. ASCII), 16 bit character sets (Unicode), and multibyte
character sets (different characters may be different sizes). Multibyte character sets are used
by the CCS application.

The majority of Forth applications, whether ANS or not, make the assumption that characters,
bytes and address units are the same. Regardless of whether this is desirable or not, it is a fact
of life that makes application portability prone to error.

Signed and unsigned characters
The current ANS specification defines C@ as zero extending the character to fill the cell on
the stack. For all character sizes less than a cell, the effect is that any future character
comparison is unsigned. The wording of COMPARE is ambiguous (“numerically less than”)
with respect to signed or unsigned comparison, and implementations of COMPARE that the

authors have inspected do differ. This has little impact while the standard only defines a 7 bit
character set in the standard, but use even in the limited environment of Europe requires the
use of 8 bit characters.

We suggest that characters be defined as unsigned so that C@ is not broken.

Counted strings
The ANS definition of a counted string declares that the count at the start of the string is the
same size as a character (3.1.3.4 and 6.1.0980). This is incompatible with the use of multibyte
(variable size) character sets. Similarly CHARS (6.1.0898) also assumes that characters are a
fixed size, and CHAR+ (6.1.0897) makes no statement about whether c-addr1 needs to
contain a character.

Terminology
(This section is taken from the LOCALE proposal)

The language and character set encoding used by the Forth system at development time is
referred to as the Development Character Set (DCS). The development character set is
assumed never to change. It is furthermore assumed that character manipulation in the Forth
system is defined in terms of the DCS, and that the action of character operations such as
CMOVE is locked to the DCS.

The language and character set encoding used by any underlying operating system is referred
to as the Operating Character Set (OCS). Note that in many environments, including
embedded systems, the OCS may be the same as the DCS.

The language and character set encoding used at application run time is referred to as the
Application Character Set (ACS). It is assumed that the largest character in an ACS fits in the
native cell of the development Forth system. Note that in many environments, including
embedded systems, the ACS may be the same as the DCS.

The DCS is usually seven or eight bit ASCII in the majority of today's Forth systems, but we
may see Unicode systems in the near future. The OCS is defined by the host machine, and is
defined by the user of the application. Thus, an application written in a Forth designed for
ISO-Latin1 may be running on an O/S with a Chinese OCS, and a visitor may switch the
application into yet another ACS, such as Russian. Such scenarios are rare within the US and
Europe, but are common elsewhere in the world. Countries such as South Africa exist with 17
official languages, and some languages such as Portugese and English are spoken in many
different countries.

Discussions

Character size
For 8 bit fixed size characters and a byte addressed machine there are few problems (except
for cell addressed machines), and these are the conditions under which most Forth systems
execute.

For 16 or 32 bit fixed size characters and a byte addressed machine, the ANS specification is
consistent, but note that many of the file words are specified in terms of characters, including
READ-FILE and WRITE-FILE. It is consequently impossible in a standard Unicode system
to write an odd number of bytes to a file. There is also no operator to convert from address

units to characters. Similarly the BLOCK word set is specified in terms of characters, which
makes text portable in terms of the 16 by 64 screen layout, but makes data non-portable
unless all BLOCK code is made sensitive to block size.

Note that all the ANS data type conversion operators convert to Address Units (AUs), and
that conversion from AUs to data size is problematic on cell addressed machines with
character packing as phrases such as 1 CHARS / will return incorrect information.

For multibyte (variable-sized) characters, counted strings do not work, and both CHARS and
CHAR+ don't work properly because they have no characters to work on. Because of the
rarity of multibyte character sets, we believe that they need be handled only by the LOCALE
wordset proposal for internationalisation of applications.

Machines that are not byte addressed are mostly of larger address units, and packing
characters (e.g. four 9 bit characters packed into a 36 bit cell) requires the character address to
be larger (in bits) than the cell address. Such machines will then require a scheme such as that
proposed in Greg Bailey’s OCTET proposal.

Given the rarity of byte addressed Forths with character sizes of two or more bytes, it would
seem that the least code breakage in a transition to Unicode or other larger character size will
be caused with the following scenario:
1) Because of the existence of string parsing words widely used in dictionary and wordlist

construction such as PARSE, define the ANS character as applying to the development
character set (DCS). The effect of this is to leave unbroken all existing systems that the
authors know of. For the reasons stated above, characters should be stated to be unsigned.
From the point of view of the ANS standard document, the definition and use of the term
character remains unchanged, although (see below) some attention to the file and block
I/O words is needed.

2) Define a wide character set such that the size of a wide character is implementation
dependent such that char<=widechar<=cell, and is unsigned. The WIDECHAR wordset
may be constructed from existing character words by prefixing then with a ‘W’ character
and replacing character by wide character in their definitions.

3) For Unicode systems, in which the DCS is greater than 8 bits, it well be sensible to define
either an OCTET based character set or a “narrow” character set which may be defined in
a similar to the widechar character set, but with an ‘N’ prefix.

4) Without adding several new I/O words, it appears that defining file i/o in terms of address
units will break almost no existing code, except on some cell addressed machines. This
can be handled by defining the “fam” words such as BIN more carefully, and perhaps
adding a couple more. OCT has already been suggested for octets.

This approach is clean. Existing programs with an 8 bit DCS are unbroken, including those
that use COUNT to step through memory. A development environment may migrate to
Unicode either by making the DCS character size 16 bits, and thus breaking some code, or by
retaining an 8 bit DCS, and defining the widechar as 16 bits or more.

In essence, this permits implementors to choose a migration path according to the
requirements of their major applications.

Multiple character set input and output.
There will always be some strings (such as modem and RFC822 commands) that will always
require 7 bit ASCII. In a Unicode native set, this will require the presence of the narrow
character set, or use of (at least) the simplified OCTET proposal suggested by Greg Bailey
consisting of:
 B@ B! BMOVE B, BYTES BYTE+

Change history
15 June 1999
• Clarified terminology section
• Removed controversy from character size discussion

